

ENGINEERING COMMITTEE

Digital Video Subcommittee

SCTE 41 2003
(formerly DVS 301)

POD Copy Protection System

 POD Copy Protection System Page ii

NOTICE

The Society of Cable Telecommunications Engineers (SCTE) Standards are intended to serve
the public interest by providing specifications, test methods and procedures that promote
uniformity of product, interchangeability and ultimately the long term reliability of broadband
communications facilities. These documents shall not in any way preclude any member or non-
member of SCTE from manufacturing or selling products not conforming to such documents,
nor shall the existence of such standards preclude their voluntary use by those other than SCTE
members, whether used domestically or internationally.

SCTE assumes no obligations or liability whatsoever to any party who may adopt the
Standards. Such adopting party assumes all risks associated with adoption of these Standards,
and accepts full responsibility for any damage and/or claims arising from the adoption of such
Standards.

Attention is called to the possibility that implementation of this standard may require the use of
subject matter covered by patent rights. By publication of this standard, no position is taken with
respect to the existence or validity of any patent rights in connection therewith. SCTE shall not
be responsible for identifying patents for which a license may be required or for conducting
inquiries into the legal validity or scope of those patents that are brought to its attention.

Patent holders who believe that they hold patents which are essential to the implementation of
this standard have been requested to provide information about those patents and any related
licensing terms and conditions. Any such declarations made before or after publication of this
document are available on the SCTE web site at http://www.scte.org.

All Rights Reserved

© Society of Cable Telecommunications Engineers, Inc.
140 Philips Road
Exton, PA 19341

 POD Copy Protection System Page iii

CONTENTS

NOTICE ..II

1. INTRODUCTION...1

1.1 Scope... 1

1.2 References ... 1
1.2.1 Normative reference list ..1
1.2.2 Informative Reference list ...2
1.2.3 Reference acquisition...2

1.3 Acronyms, Abbreviations, and Defined Terms.. 4

1.4 Copy Protection System Components.. 6

1.5 Implementation Outline... 6

1.6 Historical Perspective.. 7

1.7 Related Documents ... 7

2. SYSTEM OVERVIEW (INFORMATIVE)..8

2.1 NRSS Copy Protection Framework.. 8

2.2 Device Authentication.. 8
2.2.1 Bi-Directional Host and Cable System...9
2.2.2 Manual Return Authentication...9
2.2.3 POD Support for Multiple Hosts...9

2.3 Key Exchange and Transport Stream Protection...10
2.3.1 Setup Phase ..10
2.3.2 Key Derivation Phase...10
2.3.3 Interface Encryption..11

2.4 Data Channel Protection...12
2.4.1 Copy Control Information..12
2.4.2 Rules for CP-Scrambling based on EMI value and CA-Scrambling12

2.5 Identifying Fraudulent Devices and Disabling of Services12

3. HOST AUTHENTICATION MECHANISMS..13

3.1 Protocol Components ...13
3.1.1 X.509 Version 3 Certificate..13
3.1.2 Device Parameters ...13
3.1.3 System Parameters ..14
3.1.4 Processing Basics..14

 POD Copy Protection System Page iv

3.2 POD/Host Binding and Registration ..18
3.2.1 ID ReportING Mechanism...19
3.2.2 Authentication Phase 1 – Certificate Verification & DH Key Exchange20
3.2.3 Authentication Phase 2 – Headend Report Back ..21
3.2.4 Authentication Phase 3 – Authentication Key Verification.................................21
3.2.5 Headend Report Back Methods...22

3.3 Power-up Re-Authentication..26

3.4 POD Operation with Multiple Hosts...26

3.5 Host Operation with Multiple PODs...26

4. CRYPTOGRAPHIC FUNCTIONS..27

4.1 Authentication Key Generation...27

4.2 Copy Protection Key Generation ..28
4.2.1 Basic Key Generation Protocol..28
4.2.2 POD Module Copy Protection Key..29
4.2.3 Host Copy Protection Key..30

4.3 CP Key Refresh...30
4.3.1 Key Session Period...31
4.3.2 Key Refresh Period...31
4.3.3 CA System Key Refresh...34
4.3.4 Key Refresh Initialization..34
4.3.5 Channel Change ...34
4.3.6 Two Key Synchronization Mode (Informative) ..35
4.3.7 Transport Scrambling Control Field...35

4.4 Diffie-Hellman Key Exchange Algorithm..36
4.4.1 Algorithm Overview...36
4.4.2 Algorithm Implementation..37

4.5 SHA-1 Secure Hash Algorithm ...38

4.6 Random Number Generation ...38

4.7 DFAST Algorithm...38
4.7.1 Algorithm Overview...38
4.7.2 DFAST Characteristics ..39

4.8 RSA Digital Signatures ..39

5. HOST SERVICE REVOCATION MECHANISMS...40

5.1 System Issues..40

5.2 Revocation Circumstances [Informative]...40

5.3 Fraudulent Host Identification..40

5.4 CA System Revocation & Selective Denial of Services..................................40

 POD Copy Protection System Page v

5.4.1 Definition of Revocation...40
5.4.2 Selective Service Denial ...41

5.5 The Revocation Process...41

5.6 Implementation in the Headend..42

6. COPY CONTROL INFORMATION (CCI)...43

6.1 CCI Definition...43
6.1.1 EMI - Digital Copy Control Bits..43
6.1.2 APS - Analog Protection System...44

6.2 Associating CCI with a Service..44

6.3 Conveying CCI from Headend to POD...44

6.4 Conveying CCI from POD to Host...44
6.4.1 CCI Delivery Instances..45
6.4.2 Authenticated Tunnel Protocol ...46

7. TRANSPORT SCRAMBLING POD TO HOST...47

7.1 MPEG Scrambling ...47
7.1.1 Scrambling Rules..47

7.2 Transport Processing ...48

7.3 Timing of Scrambling Mode Transitions...48

7.4 CP-Scrambling as a function of CA-Scrambling and EMI Value48

8. HOST, POD, & HEADEND MESSAGING PROTOCOLS...49

8.1 Message Protocol Overview..49

8.2 POD & Host Common Messages...50
8.2.1 Opening a Session..50
8.2.2 Host Capability Evaluation...52
8.2.3 Copy Protection Key Generation...54
8.2.4 Host and POD Synchronization..57

8.3 One-way System Host Authetication Message Protocol................................59
8.3.1 Protocol Flow Overview...59
8.3.2 Host Authentication Messages..62
8.3.3 Host Authentication Key Verification Messages...65

8.4 Two-way System Host Authentication Message Protocol.............................67
8.4.1 Protocol Flow Overview...67
8.4.2 Host Authentication Protocol Implementation..68

8.5 CCI Simple Authentication Tunnel Protocol (SATP) Messages..................70

 POD Copy Protection System Page vi

APPENDIX A. LUHN CHECK DIGIT (NORMINATIVE)...A

APPENDIX B. APPLYING CP-KEY TO DES ENGINE (NORMATIVE)... B

Method of Application...B

Examples of CP encryption oF MPEG DATA IN transport packetsC

List of Figures

Figure 3.1-A POD-Host CP Operation ..17
Figure 3.1-B Headend CP Operation...18
Figure 3.2-A Example of a manual ID Report Request Message...20
Figure 3.2-B Example CP System Failure Notification message..21
Figure 4.0-A Overall POD Copy Protection...27
Figure 4.3-A POD CP Key Refresh Session Flow Chart...33
Figure 4.4-A Diffie-Hellman Key Agreement Protocol between POD and Host36
Figure 6.4-A CCI Delivery Sequence..45
Figure 8.1-A Copy Protection Message Protocol Overview...49
Figure 8.3-A One-way System Message Protocol Overview ..59
Figure 8.4-A Two-way System Protocol Flow Overview...67

 POD Copy Protection System Page vii

List of Tables
Table 3.1-A Length of Device Parameters in the Host Authentication...............................13
Table 3.1-B Length of System Parameters ...14
Table 4.2-A Length of Keys and Parameters Used in the Key Generation.........................30
Table 4.3-A MPEG Transport_scrambling_control values ...35
Table 5.6-A CRL Based Host and POD Service Revocation..42
Table 6.1-A CCI Bit Assignments...43
Table 6.1-B EMI Values and Content ...43
Table 6.1-C APS Value Definitions ..44
Table 7.4-A CP-Scrambling based on CA-Scrambled State and EMI Value.....................48
Table 8.2-A Copy Protection Open Session Information...50
Table 8.2-B Open_Session_Request() Message Syntax ...51
Table 8.2-C Copy Protection Resource Class...51
Table 8.2-D Open_Session_Response() Message Syntax ..52
Table 8.2-E Host CP Support Capability Evaluation Messages...52
Table 8.2-F CP_open_req() Message Syntax ...53
Table 8.2-G CP_open_cnf() Message Syntax...53
Table 8.2-H CP_system_id_bitmask Values..53
Table 8.2-I CP_data in the Transmission Key Generation Messages....................................54
Table 8.2-J CP_data_req() Message Syntax In the Key Generation Messages................54
Table 8.2-K Datatype_ID and Datatype_length Values..55
Table 8.2-L CP_system_id Values ..56
Table 8.2-M CP_data_cnf() Message Syntax In the Key Generation Messages56
Table 8.2-N Host and POD module Synchronization Messages...57
Table 8.2-O CP_sync_req() Message Syntax ..57
Table 8.2-P CP_sync_cnf() Message Syntax..57
Table 8.2-Q Status_field Value..58
Table 8.3-A One-way System Message Reference Sections..60
Table 8.3-B Host Authentication Messages...62
Table 8.3-C CP_data_req in the Host Authentication Request Message...........................63
Table 8.3-D CP_data_cnf in the Host Authentication Response Message.........................64
Table 8.3-E Host Authentication Key Verification Messages ..65
Table 8.3-F CP_data_req in the Authentication Key Verification Request Message........65
Table 8.3-G CP_data_cnf in the Authentication Key Verification Response Message....66
Table 8.4-A Two-way System Message Reference Sections...68
Table 8.5-A CCI Simple Authentication Tunnel Protocol Messages70
Table 8.5-B CP_data_req() Message Syntax in SATP Key Generation71
Table 8.5-C CP_data_cnf() Message Syntax in CCI SATP Key Generation........................71
Table 8.5-D CP_data_req() Message Syntax in CCI SATP Transmission...............................72
Table 8.5-E CP_data_cnf() Message Syntax in CCI SATP Transmission................................72

 POD Copy Protection System Page 1

1. INTRODUCTION

1.1 SCOPE

In digital Cable systems, high value movies and video programs (“content”) are
protected by a conditional access scrambling system. A properly authorized Point of
Deployment (POD) security module removes the scrambling and, based on the Content
Control Information from the Headend, may rescramble the content before delivering it
to consumer receivers and set-top terminals (“Host devices”) across the POD-Host
interface defined in ANSI/SCTE 28 2001.

This standard defines the characteristics and normative specifications for the system
that prevents unrestricted copying of such high value content as it crosses the POD-
Host interface.

Content that is delivered unscrambled over Cable systems is not subject to this
standard. Indeed, this standard would not provide any protection against unrestricted
copying of such content. Any unscrambled content output by the Host on the POD
interface will not benefit by scrambling upon its subsequent output from the POD on that
same interface.

This standard provides methods for authenticating Host devices, for binding POD
modules to Host devices including Diffie-Hellman key exchange, for copy protection key
generation, for rescrambling high value content to protect against unauthorized copying
(after the POD module employs the conditional access system to descramble it) and
then descrambling by the Host, and for transmission and authentication of Copy Control
Information. It also provides for revocation of Host devices that are determined to be
fraudulent or non-compliant.

This standard requires the use of technology that must be licensed from CableLabs.
The technology is called DFAST (U.S. Patent No. 4,860,353 and related know-how),
and the license is PHILA – “POD-Host Interface License Agreement”, available from
CableLabs. Please refer to section 1.2.3 under “DFAST Technology, PHILA, and
PHICA” for contact information for such a license.

1.2 REFERENCES

1.2.1 NORMATIVE REFERENCE LIST

The following standards contain provisions that, through reference in this text, constitute
normative provisions of this Specification. At the time of publication, the editions
indicated are current. All standards are subject to revision, and parties to agreements
based on this Specification are encouraged to investigate the possibility of applying for
the most recent editions of the standards listed in this section.

1. ANSI/SCTE 28 2001: “Host-POD Interface Standard”

 POD Copy Protection System Page 2

2. EIA 679-B, Part B: “National Renewable Security Standard” (March 2000)

3. ITU-T Recommendation X.509, “Information Technology – Open Systems
Interconnection – The Directory: Public-key and Attribute Certificate Frameworks”,
March 2000.

4. FIPS PUB 46-3: “Data Encryption Standard (DES)” 1999 October 25

5. PS-PUB 81: “DES Modes of Operation” 1980 December 2I

6. FIPS PUB 140-1: “Security Requirements for Cryptographic Modules”, 2001 May 25

7. FIPS PUB 180-1: “Secure Hash Standard”, 1995 April 17

8. FIPS PUB 186-2, “Digital Signature Standard” Federal Information Processing
Standards Publications (FIPS PUB), 2000 January 27.

9. RSA1, “PKCS #1: RSA Encryption Standard”, Version 1.5, November 1993

10. MPEG: ISO/IEC 13818-1 (2000) Information Technology - Generic coding of moving
pictures and associated audio information: Systems

1.2.2 INFORMATIVE REFERENCE LIST

The following references contain information that is useful in understanding of this
Specification. Some of these documents are drafts of standards or balloted standards
with unresolved comments.

1. RSA3, “PKCS #10 V1.7: Certification Request Syntax Standard”, May 2000

1.2.3 REFERENCE ACQUISITION

DFAST Technology, PHILA, and PHICA: Cable Television Laboratories, Inc.

Cable Television Laboratories, Inc., 400 Centennial Parkway, Louisville, CO 80027;
Telephone: 303-661-9100; Facsimile: 303-661-9199;
E-mail: opencable@cablelabs.com; URL: <www.cablelabs.com>

EIA Standards: Electronic Industries Association

Global Engineering Documents, World Headquarters, 15 Inverness Way East,
Englewood, CO USA 80112-5776; Telephone 800-854-7179; Facsimile: 303-397-2740;
E-mail: global@ihs.commailto:global@his.com ; URL: <http://global.ihs.com>

IEEE Standards: Institute of Electrical and Electronic Engineers

Institute of Electrical and Electronic Engineers, 445 Hose Lane, Piscataway, NJ 08855-
1331, USA; E-mail: customer.service@ieee.org ;
URL: <http://standards.ieee.org/index.html>

 POD Copy Protection System Page 3

ISO: International Standards Organization

Global Engineering Documents, World Headquarters, 15 inverness Way East,
Englewood, CO 80112-5776, USA: Telephone: 800-854-7179; E-mail: global@ihs.com;
URL: http://global.his.com

ITU-T: International Telecommunications Union – Telecom Standardization

International Telecommunications Union, Geneva, Switzerland. URL:
<http://www.itu.int/publications/index.html>

NIST Publications: National Institute of Standards and Technology

National Technical Information Service (NTIS), U. S. Department of Commerce,
5285 Port Royal Road, Springfield, VA 22161;
Telephone: 1-800-553-NTIS (6847) or 703-605-6000; FAX: 703-321-8547;
E-mail orders: orders@ntis.fedworld.gov, URL: <http://www.itl.nist.gov/fipspubs/>

RSA Security

RSA Security, Inc, 174 Middlesex Turnpike, Bedford, MA 01730; Telephone: 781 515
5000; FAX: 781 515 5010; URL: <http://www.rsasecurity.com/rsalabs/pkcs>

SCTE Standards: Society of Cable Telcommunications Engineers

Society of Cable Telcommunications Engineers, 140 Philips Road, Exton, PA 19341,
USA. Telphone: 610-363-6888; Facsimile: 610-363-5898; E-mail: scte@scte.org; URL:
<http://www.scte.org/standards/standardsavailable.html>

 POD Copy Protection System Page 4

1.3 ACRONYMS, ABBREVIATIONS, AND DEFINED TERMS

APDU Application Protocol Data Unit: a command, query, and reply message
exchange protocol between POD and Host

APS Analog Protection System for copy control of analog output video

AuthKey Authentication Key, calculated by both the POD and Host as part of the
Host authentication process

Authentication A procedure to securely confirm that a Host or POD has a genuine X.509
certificate and that the certificate has not been revoked. Also: a means to
securely confirm that a message originated in a trusted source.

CA, CA System Conditional Access, Conditional Access System – secures delivery of
Cable services to the POD from unauthorized access

CA-only The POD mode of CA-descrambling EMI=0 content and returning it to the
Host CP-unscrambled

Cable The Cable Television industry, services, systems, or equipment

CCI Copy Control Information

CP Copy Protection

CP-Key The Copy Protection Key derived between the POD and Host, and used
by the POD to CP-scramble protected content sent to the Host

CP System The Copy Protection System described in this specification

CRL Certificate Revocation List: the means of reporting bad Host_ID's to Cable
Headends

DES Data Encryption Standard

DES-ECB Data Encryption Standard – Electronic Code Book

DFAST Dynamic Feedback Arrangement Scrambling Technique, a component of
the encryption algorithm

DH Diffie-Hellman, a public key agreement protocol based on the intractability
of taking discrete logarithms over the integer field.

EMI “Encryption Mode Indicator” As used in this document the meaning of
this acronym is "Copy Control" Mode Indicator for digital outputs. The
acronym EMI is used by the DTLA and is retained here for consistency.

EMM Entitlement Management Message

 POD Copy Protection System Page 5

Encrypted Data modified to prevent unauthorized access (compare with
"scrambled")

FAT Forward Application Transport, the 6 MHz digital channels from Headend
to home and between POD and Host

Host Certificate The unique X.509 certificate issued to each Host device and used for
Host authentication. Parameter name: Host_DevCert

Host_ID The Host device’s unique identification number

LSB Least Significant Bit, of a specified binary value

MMI Man Machine Interface

MPEG The ISO/IEC 13818 specifications and ISO/IEC 13818-1 in particular

MSB Most Significant Bit, of a specified binary value

Nonce A random value generated fresh for each use and included in some Host-
POD exchanges to make each exchange unique

Pass-through The POD mode of passing CA-scrambled back to the Host unchanged,
leaving it unusable by the Host

PHI POD-Host Interface as specified in SCTE 28 2001 and successors

PHICA POD-Host Interface Certificate Authority, root X.509 certificate
administrator for X.509 certificates on the PHI. Identified under PHILA.

PHILA POD Host Interface Licensing Agreement, covers the DFAST technology
and specifies the PHI Certificate Authority - PHICA

POD or Point of Deployment module, the removable PC-Card form factor Cable
POD Module security module

POD Certificate The unique X.509 certificate issued to each POD and used for POD
authentication. Parameter name: POD_DevCert.

POD-CP POD copy protection, as specified in this document

POD CPS The POD Copy Protection System, as specified in this document

POD_ID The POD module's unique identification number

RDC Return Data Channel: transmitted from home to Headend

Report-back The action or process of reporting information from the POD or Host back
to the Headend

Rescramble The POD mode of CA-descrambling and CP-scrambling content

 POD Copy Protection System Page 6

RSA algorithm An RSA Security defined commercial public key cryptographic algorithm

SATP Simple Authenticated Tunnel Protocol

Scrambled Content modified to prevent unauthorized access (compare with
"encrypted")

SHA-1 Secure Hash Algorithm, a cryptographic compression function

Shall "Shall" denotes a mandatory provision of this standard

Should, May “Should" denotes a provision that is recommended but not mandatory.
"May" denotes a feature whose presence does not preclude compliance
and may or may not be present at the option of the implementer.

SPDU Session Protocol Data Unit (SPDU)

SSK A shared secret system parameter used by both POD (SSKP) and Host
(SSKH) to authenticate the exchange of Diffie-Hellman public key
parameters.

Validation The process of reporting the Host_ID to the system operator, checking it
against a revocation list, reporting the validated Host_ID back to the
POD, and the POD confirming it matches the stored Host_ID.

X.509 The ITU-T Recommendation X.509 standard

XCA X.509 certificate authority

1.4 COPY PROTECTION SYSTEM COMPONENTS

This copy protection system (CP System) includes:

• The Cable navigation device, or Host

• The POD module

• The Cable Headend (which revokes selected services from compromised Hosts)

• The PHICA which issues device ID’s and generates X.509 manufacturer certificates.

1.5 IMPLEMENTATION OUTLINE

The POD CP System consists of the following two operational elements:

Host Authentication, based on the exchange of Host and POD certificates across the
POD-Host interface. Each device verifies the other’s certificate using signature
verification techniques, and the Host and POD IDs are reported to the Headend. The
Headend compares the IDs against a revocation list and takes appropriate revocation
action against compromised devices.

 POD Copy Protection System Page 7

Copy Protection Key Derivation, using a Diffie-Hellman shared secret key that was
computed during the Host Authentication process. CP-scrambling by the POD of
content marked with non-zero EMI. The POD first CA-descrambles this content and
then rescrambles such High Value content using the Copy Protection Key before
delivery to the Host. A companion CP-descrambling process occurs in the Host.

1.6 HISTORICAL PERSPECTIVE

This specification has its origins in EIA-679, the National Renewable Security Standard,
which was initially adopted in September 1998. Part B of that standard has the physical
size, shape and connector of the computer industry PCMCIA card.

That standard did not take into account the requirements of the movie industry to
protect against the unrestricted copying of digital video movies and programs.

Further extensions and modifications of EIA-679 led to the adoption of EIA-679-B in
March 2000. EIA-679-B permits the use of copy protection techniques but does not
select any single approach.

Consequently, the Cable industry selected the particular approach embodied in this
document, and submitted it as DVS/213 in June 1999. Extensive revisions were
developed by the Cable industry, and submitted as DVS 301 (January 2000). Work on
this document by the Cable industry proceeded during the first half of 2000, leading to
substantial changes that were embodied in DVS 301r1, r2 and finally DVS301r3 which
was successfully balloted and adopted as ANSI/SCTE 41 2001. This document
updates that work to current industry practice..

1.7 RELATED DOCUMENTS

This document is intended to supplement the functionality of the POD module interface
described in ANSI/SCTE 28 2001 which defines how copy protection fits into the overall
POD module interface functionality.

 POD Copy Protection System Page 8

2. SYSTEM OVERVIEW (INFORMATIVE)

2.1 NRSS COPY PROTECTION FRAMEWORK

This document is based on the copy protection framework defined in EIA-679-B,
National Renewable Security Standard (NRSS), Part B, section 8.9 with some
substantial changes. The NRSS Copy Protection Framework includes:

• POD/Host Binding,

• DES-ECB Scrambling System (FAT Channel),

• MPEG Systems for the transport layer (FAT Channel),

• NRSS-B Interface Copy Protection Resource (Data Channel),

• NRSS-B Interface Messages (Data Channel).

But, NRSS doesn’t reference any of the following operations that are described in this
document:

• Device authentication,

• Host revocation via selective service denial.

Under the NRSS Copy Protection Framework, the POD module checks the ability of the
Host to support POD-CP by checking availability of the Copy Protection Resource as
defined in ANSI/SCTE 28 2001 and verifies the Host. If the Host is not valid, the POD
module goes to “pass-through” mode, simply passing any received transport stream
back to the Host unchanged.

2.2 DEVICE AUTHENTICATION

The CP System requires authentication of the Host and POD prior to the POD
descrambling any of the copy-protected material. The POD requests the Host’s X.509
Certificate List and the Host provides it. The Host requests the POD’s X.509 Certificate
List and the POD provides it. Authentication is based on:

• POD being able to verify the signature of the X.509 host device certificate that contains
Host_ID and the POD being able to verify the signature of the Host Manufacturer’s XCA
certificate; and

• Host being able to verify the signature of the X.509 POD device certificate that contains
the POD_ID and the Host being able to verify the signature of the POD Manufacturer’s
XCA certificate.

• POD and Host being able to prove it holds the private key paired with the public key
embedded in the X.509 certificate by signing a DH session key and sending it to the
other device for signature validation.

• The Host_ID and POD_ID extracted from the X.509 certificates are not included in the
CRL, as checked in the Headend.

• POD and Host being able to prove that they can derive the authentication key.

 POD Copy Protection System Page 9

Additionally, the POD will validate the authenticity of the X.509 Host Certificate and the
Host will validate the authenticity of the X.509 POD Certificate using the License
Administrator’s public verification keys that are delivered by the CA System to the POD
and Host in an authenticated manner. If the Validated_Host_ID value is the same as the
Host_ID in the authenticated X.509 Host Device Certificate and the Validated_POD_ID
value is the same as the POD_ID in the authenticated X.509 POD Device Certificate,
the Host and POD can continue with the key exchange process described in Chapter 3.

2.2.1 BI-DIRECTIONAL HOST AND CABLE SYSTEM

If both the Host and Cable system support automatic report-back, via either telco
modem or an on-cable return channel, the POD sends the POD and Host information
on that channel without the need for manual reporting.

2.2.2 MANUAL RETURN AUTHENTICATION

The POD and Host ID’s must be reported to the service provider before the Host can
access Copy Protected content. The end-user or the retailer may perform this service.

For one-way Cable systems, unidirectional Hosts, or any system without a functioning
automatic report-back mechanism, reporting of the authentication ID’s is accomplished
manually. For example by the user making a telephone call to the service provider.
The manual return authentication process is detailed in section 3.2.1.

2.2.3 POD SUPPORT FOR MULTIPLE HOSTS

Although it may be technically feasible to build a POD that is capable of binding to
multiple Hosts, such that the POD can be moved from Host to Host, such operation is
beyond the scope of this specification. Multiple Host capability may be added to a future
extension of this specification.

 POD Copy Protection System Page 10

2.3 KEY EXCHANGE AND TRANSPORT STREAM PROTECTION

The copy protection mechanism itself consists of three phases: Setup, Key Derivation,
and Interface Encryption. PODs and Hosts contain the algorithms for Diffie-Hellman
(DH) key negotiation, SHA-1 hashing, and DES. The DH system-wide constants (g and
n) are chosen to be large enough to be secure for the long term (e.g., n is 1024 bits for
DH based on discrete log). These constants are provided under license by the PHICA.
PODs and Hosts also contain private keys (x and y, respectively) and the corresponding
public keys (gx mod n and gy mod n). The private keys x and yh are pseudorandom
integers generated each time a POD and Host are bound. The private keys must also
be large enough to be secure for the long term (e.g., 1024 bits for DH based on discrete
log).

2.3.1 SETUP PHASE

In case of successful mutual authentication between POD and Host, the POD and the
Host negotiate and derive two long term shared secrets using Discrete Logarithm Diffie-
Hellman in a protocol that is detailed later in Chapter 3 to exchange data across the
interface. One of the long-term secrets is a 160-bit authentication key, and the other is
a 1024-bit shared DH secret value. Finally SHA-1 and DFAST intellectual property are
used to generate a Copy Protection Key (CP-Key).

2.3.1.1 AUTHENTICATION KEY SETUP

Normally an authentication key (AuthKeyP/AuthKeyH) is only calculated once during
POD-Host binding and stored in non-volatile memory.

If AuthKeyH delivered by the Host after power-up does not match the AuthKeyP stored
by the POD, then the entire Host authentication process is re-initialized.

The AuthKey generation process is detailed in section 4.1.

2.3.1.2 LONG TERM DIFFIE-HELLMAN SHARED KEY VALUE

Similar to the authentication key process, Diffie-Hellman shared key calculation is
normally conducted when the Host authentication process is initiated. The derived DH
shared secret (DHKey) is saved in non-volatile memory once it is calculated.

2.3.2 KEY DERIVATION PHASE

After a POD module and Host complete authentication, each device derives the Copy
Protection Key (CP-Key). The CP-Key is calculated based on the long-term keys,
AuthKey, DH keys, and the random numbers exchanged for key generation. This CP-
Key is unique to the particular POD-Host pair, and serves to bind them together for
content protection. Details are discussed in chapters 3 and 4.

 POD Copy Protection System Page 11

2.3.3 INTERFACE ENCRYPTION

The POD uses encryption techniques to scramble copy-protected content transmitted
across its interface with the Host. The POD rescrambles the content it has
descrambled under the conditional access system using DES in ECB mode and the
computed Copy Protection Key before sending it across the interface to the Host.

The POD passes content in one of four modes determined by CA System scrambling
mode and EMI values as detailed in Table 7.4-A:

• Clear: no change of CA-unscrambled and EMI=0 content which remains 'in-the-clear'

• CA-only: descrambles CA-scrambled content marked EMI=0 for output 'in-the-clear'

• Rescramble: CA-descrambles and CP-scrambles content marked EMI>0

• Pass-through: no change of CA-scrambled content (leaving it unrecognizable to the
Host)

The Copy Protection Key is applied across all rescrambled packets. Only one copy-
protected MPEG program is delivered from the POD to the Host at any time.

The POD CP-scrambles only the payload portion of transport packets using DES
electronic code book (DES-ECB) encryption. DES-ECB encrypts data in 8-byte blocks.
The ECB DES is applied block-by-block, starting at the beginning of the transport
packet payload. Any short block will therefore occur at the end of the transport packet.
Partial blocks (e.g. less than 8 bytes) remaining at the end of a scrambled transport
packet are not encrypted. The transport packet header and adaptation field (if any) is
not scrambled. See chapter 7.

 POD Copy Protection System Page 12

2.4 DATA CHANNEL PROTECTION

There are currently no messages defined on the data channel or extended channel
POD↔Host interface that require message encryption. However, CCI information
travelling from POD to Host is authenticated, as described in Chapter 6.

2.4.1 COPY CONTROL INFORMATION

Copy control information (CCI) is passed from the POD module to the Host across the
data channel to inform the Host device of the level of copy protection required. The CCI
is sent in the clear to the Host device, but the integrity of the information is maintained
by authenticating the CCI using a simple protocol.

The one-byte CCI field contains information that the Host uses to control copying of
content. Two EMI bits control copying on Host digital outputs, two APS bits control
copying on analog outputs, and four bits are reserved.

2.4.2 RULES FOR CP-SCRAMBLING BASED ON EMI VALUE AND CA-SCRAMBLING

1. CP-scrambling is applied only to protected content, as indicated by EMI greater than
zero.

2. All copy-protected content is delivered CA-scrambled to the POD.

3. Non-copy-protected content, with EMI = 00, may be delivered to the POD either CA-
scrambled or CA-unscrambled.

2.5 IDENTIFYING FRAUDULENT DEVICES AND DISABLING OF SERVICES

The POD requests and verifies the Host Certificate. The POD then extracts the Host ID
and passes it, by either manual or automated means to the service provider. The
service provider confirms the Host is permitted to receive protected content by returning
a Host_ID validation massage back to the POD.

If the service provider determines that a fraudulent Host device should no longer receive
a service or group of services, the conditional access system denies the appropriate
services to the POD that is bound to the fraudulent Host. Restoration of services is also
executed by the conditional access system. This CA System-based revocation is
known as Selective Service Denial that may entail:

• Complete loss of service

• Loss of particular channels, e.g., HBO™ or Showtime™.

• Loss of individual programs on channels

The service provider may use CA mechanisms to deliver “pass/no pass” commands to
the POD for each service as well as new copy protection parameters. Service provider
involvement and control provides a highly flexible system for protection of content
copyrights.

 POD Copy Protection System Page 13

3. HOST AUTHENTICATION MECHANISMS

3.1 PROTOCOL COMPONENTS

Host authentication is based on:

• The POD and Host verifying the opposite device’s certificate signature

• The POD and Host verifying, with the received public key, a unique message signed with
the opposite device’s private key.

• The CA system confirming that the POD and Host ID’s extracted from the X.509
certificates are not in the CRL

3.1.1 X.509 VERSION 3 CERTIFICATE

The POD and Host each have a private key used for digital signatures and an X.509
Certificate. The certificate includes a unique ID and the public key provided to other
devices to validate the digital signatures. Each device also has its Manufacturer CA’s
certificate that is used to sign the device certificate, and the root certificates that is used
to sign the Manufacturer CA’s certificate

3.1.2 DEVICE PARAMETERS

The following device parameters are used in this authentication protocol:

• DH_pubKeyH: The Host Diffie-Hellman public key, also used as a Host-generated nonce
in the calculation of the Authentication Key.

• DH_pubKeyP: The POD Diffie-Hellman public key, also used as a POD-generated nonce
in the calculation of the Authentication Key.

• AuthKeyH (derived): The Host Authentication Key.

• AuthKeyP (derived): The POD Authentication Key.

Table 3.1-A Length of Device Parameters in the Host Authentication

Key or Variables Size (bits)

Diffie-Hellman Public Keys (DH_pubKeyH, DH_pubKeyP) 1024 each

Authentication Keys (AuthKeyH , AuthKeyP) 160 each

 POD Copy Protection System Page 14

3.1.3 SYSTEM PARAMETERS

Table 3.1-B defines system parameter length and source:

Table 3.1-B Length of System Parameters

Key or Variable Size (bits) Source of
Parameter

POD_ID 64 bits PHICA and
manufacturer

Host_ID 40 bits PHICA and
manufacturer

Diffie-Hellman prime (n) 1024 bits PHICA

Diffie-Hellman base (g) 1024 bits PHICA

RSA public signing key exponent 40 bits PHICA

3.1.4 PROCESSING BASICS

The POD Copy Protection System (CPS) comprises the following basic steps:
1. The Host shall report copy protection as a resource during the profile inquiry process.

Failure to do so constitutes a failure of the copy protection system (see section 3.2.2).
After the copy protection resource has been reported, the POD module shall permit CA
decryption of programs with a EMI value of 00.

2. The POD module shall open a session to the copy protection resource, section 8.2.1.
Failure to open a valid session constitutes a failure of the copy protection system (see
section 3.2.2).

3. The POD module shall send a CP_open_req APDU to the Host, section 8.2.2.1.

4. The Host shall respond with the CP_open_cnf APDU within 5 seconds. Failure to
respond to any request within 5 seconds constitutes a failure of the Host and shall cause
the POD module to set the IIR flag.

5. The Host shall respond with the System 2 bit set in CP_system_id_bitmask, section
8.2.2.2. Failure to do so constitutes a failure of the copy protection system (see section
3.2.2).

6. If the POD module contains a valid Authentication key in its non-volatile memory, it shall
request the Host to send its AuthKeyH.

7. The Host shall respond with its AuthKeyH, if available. If it is not available, then it shall
transmit a value of all 0’s. A value of all 0’s shall be recognized by the POD as an invalid
AuthKeyH.

8. The POD module shall compare the received AuthKeyH with its stored AuthKeyP. If the
authentication keys match, then the certificates are considered valid, the DH Key and
authentication keys are preserved, only the Copy Protection Key is regenerated,
andcontinue with step 17. If the authentication keys do not match the POD shall set set
Headend Validated to false in nonvolatile memory and the POD and Host shall continue
with step 9.

 POD Copy Protection System Page 15

9. The POD module shall send its POD Certificate Data (POD_DevCert and POD
ManCert), the newly generated DH public key (DH_pubKeyP), and the Diffie-Hellman
key signature . In this message, the POD also requests that the Host deliver its Host
Certificate Data (Host_DevCert and Host_ManCert) and signed DH public key
(DH_pubKeyH).

10. The Host shall reply to the POD module request with its Host Certificate Data
(Host_DevCert and Host_ManCert) and newly generated and signed DH public key.

11. The POD module shall verify the Host_DevCert, the Host_ManCert, the signature on the
Diffie-Hellman public key (DH_pubKeyH) and extract the Host_ID from the Host
certificate. If verification fails, this constitutes a failure of the copy protection system (see
section 3.2.2).

12. The Host module shall verify the POD_DevCert, the POD_ManCert, the signature on the
Diffie-Hellman public key (DH_pubKeyP) and extract the POD_ID from the POD
certificate. If verification fails, this constitutes a failure of the copy protection system (see
section 3.2.2).

13. After these exchanges, both the POD module and the Host come up with their
respective authentication key, AuthKeyP and AuthKeyH.

14. The POD module shall request AuthKeyH and compare it to AuthKeyP. If they are not
equal, this constitutes a failure of the copy protection system (see section 3.2.2). If they
are equal, then the POD module and Host shall complete the Diffie-Hellman operation
and store the derived authentication key into non-volatile memory.

15. The following depends upon what path is available to report device IDs to the headend.

a. If possible, i.e., in a system with an active return data channel or telco return
path, the POD module shall send the POD_ID and Host_ID to the cable headend
via an upstream OOB private CA message or telco modem. The POD module
also stores the Host_ID and POD_IDs in nonvolatile memory so they can be
compared with the validated IDs received back from the headend. Status of this
transmission shall be stored in non-volatile memory to prevent unnecessary
retranmissions.

b. In systems in which no automated return path is available, the POD module
sends a display message as defined in section 3.2.5.1.

16. The headend CA System records the pairing between Host_ID and POD_ID, and looks
for the Host_ID in the revocation list. If not found, the CA System re-sends the Host_ID
and POD_ID back to the POD module in a private authenticated CA System ID
validation message. This message may be sent to the POD module substantially later in
time than when the POD and Host_ID’s are reported to the heandend.

17. Until the POD and Host ID headend validation is completed the POD module shall CA
decrypt onlythose services with an EMI value of 00.

[Asynchronously and independent of this process, the CA system typically sends an EMM to
the POD module to authorize appropriate services. Some of these services may have EMI
values of 01, 10, or 11. The POD module shall not output services with these EMI values
until headend ID validation is complete, even if these services are otherwise authorized in
an EMM.]

 POD Copy Protection System Page 16

18. The POD module authenticates the ID validation message and compares the received
Host_ID and POD_ID with the ID’s extracted from the Host device certificate and the
POD device certificate, respectively. If they match, the POD module shall store the
Headend Validated True in nonvolatile memory and allow CA decryption of high value
content with EMI values of 01, 10, or 11, if so authorized by an EMM. If they do not
match, the POD module shall continue to limit its CA decryption to those services with
EMI values of 00 only.

19. If the headend CA systems receives a new revocation list, it shall examine all previously
reported Host_IDs and if there are any matches, it shall notify the cable operator.

20. If a POD module reports a failure of the copy protection system to the headend CA
system, the headend CA system shall notify the cable operator.

The following flowcharts show an implementation of the above steps:

 POD Copy Protection System Page 17

POD powered up in Host

Copy protection
resource sucessfully

opened? (4)

POD requests AuthKEY
from Host (6)

AuthKEY matches
previously stored

AuthKey? (8)

POD sends X.509
certificate list to Host and
requests X.509 certificate

list from Host and DH key
exchange (9)

Are Host and POD
certificate lists valid?

(11, 12)

Allow CA decryption of
content for CCI=00 (1)

Send Host_ID & POD_ID
to Headend (via OOB or
MMI as required) (15)

POD requests Host
AuthKeys and performs

comparison (14)

AuthKeys Match? (14)

Received Host_ID
& POD_ID validation

from Headend?
(17)

Only in-the-clear
services available

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Validation message
is/was authenticated?

(18)

Yes

No

Allow CA decryption of
content for all CCI values.

(18)

Done

POD-Host CP Operation

set Headend Validated
to true in NVM.

(18)

set Headend Validated
to false in NVM.

Set headend CP error
notified to false in NVM.

set Headend Validated
to false in NVM.

Disable all
CA decryption.

Headend CP error
notified = true?

Send CP error notification
to headend with POD ID

(if possible)

POD sends MMI message
to user.

Set headend CP error
notified to true in NVM

No

Yes

Note: This chart is an informative illustration of a possible compliant solution.
Other solutions are permissable within the requirements of this document.

Copy protection
resource reported by

Host? (1)

Section 3.2.2
describes
handling of
CP system
failures.

Figure 3.1-A POD-Host CP Operation

 POD Copy Protection System Page 18

Headend receives new
Host_ID

Send authenticated
acknowledgement to POD

(16)

Host_ID on
revocation list?

(16)

Operator decision:
Change EMM's?

Change EMM's as
 appropriate

Done

Notify operator

Headend receives new
revocation list

Any Host_ID's on
revocation list?

(19)

Operator decision:
Change EMM's?

Change EMM's as
appropriate

Done

Notify operator (19)

Headend CP Operations

No

Yes

No

Yes

Yes

No

Yes

No

Headend receives new CP
error

Notify operator (20)

Done

Figure 3.1-B Headend CP Operation

3.2 POD/HOST BINDING AND REGISTRATION

After POD insertion and a complete PCMCIA power up initialization, the Host
authentication protocol below is conducted between the POD and Host. At this initial
binding, the process of Host authentication with the POD module has three steps:

• certificate verification

• derived Authentication Key step

• Host_ID and POD_ID report-back to the Headend, Headend validation

The Certificate Revocation List (CRL) is used in the Headend to validate the POD and
Host as part of the revocation through the CA System (not in the POD or Host).

The CA System shall have the ability to command the POD to Full Copy Protection
Reinitialization, as if the POD were inserted into its Host for the first time. When this
occurs, the POD shall begin Authentication all over again, as if it had never before been
registered or authenticated with that specific Host. For one-way cable systems or Uni-

 POD Copy Protection System Page 19

Directional Hosts this will require the consumer to call the operator to report the Host
and POD Module IDs for validation.

3.2.1 ID REPORTING MECHANISM

The Host_ID and POD_ID must be reported to the service provider before the POD will
provide High Value content to the Host. The retailer may perform this service for the
subscriber.

In a system with two-way RF or telco return functionality (Host, Cable plant or phone
line, and Headend all support compatible connections) the Host_ID and POD_ID may
be sent to the Headend in an authenticated CA System message.

For one-way Cable systems, unidirectional Hosts, or any system without an automatic
report-back mechanism, the POD and Host ID’s must be reported manually. The POD
module shall always include a diagnostic menu item in the application info APDU for
display of the Host_ID and POD_ID to the user (see below). The POD module shall
determine if the Host is unidirectional by sending the oob_tx_tune_req() APDU and
receiving the oob_tx_tune_cnf() APDU. If the status_field is a 0x01 (RF transmitter not
physically available), then the POD module shall define the Host as unidirectional. The
POD module shall also have a means of determining if the system it is resident in is
unidirectional.

Following power-up if the POD module determines it has not bound to the Host and is
either in a unidirectional system or is inserted into a unidirectional Host, the POD
module shall open a session to the Host's MMI resource (if not already open), and send
an open MMI dialog request.

If the Host is in an off state or any non-video viewing state, it shall deny the dialog open
request. When the Host is in a video viewing state, it shall grant the open MMI dialog
request. The POD module shall then send a message containing the Host_ID and
POD_ID to the Host in the clear. This message shall contain the Host_ID and POD_ID,
each with a Luhn check digit (described in appendix A) appended, in decimal format
(digits 0-9) so that they are easy to read and speak and can be entered from a touch-
tone telephone keypad. The Host shall display the message and confirm to the POD
module that the message has been displayed to the customer.

The unidirectional message screen shall be displayed only if:

1) the message is selected through a user menu system,

2) the user selects a program with CP active (EMI ≠ 0) before the Host is validated, or

3) the POD initiates the message display, e.g., at the request of the CA System.

Figure 3.2-A is an example manual ID report request message in which the POD and
Host ID’s are each presented as 13 decimal digits including a Luhn check digit.

 POD Copy Protection System Page 20

In order to start service for this device
please contact SuperVision Cable at

1-800-555-8888

POD ID: 7-561-034-449-009

Host ID: 0-100-331-784-018

Figure 3.2-A Example of a manual ID Report Request Message

3.2.2 AUTHENTICATION PHASE 1 – CERTIFICATE VERIFICATION & DH KEY EXCHANGE

At the first step of the POD CPS authentication protocol, the Host Certificate List, POD
Certificate List, signed data, and Diffie-Hellman public keys are exchanged between the
POD and Host. Prior to that, the POD is authorized only for programs with EMI data set
to a value of 00 (“copying permitted”) if otherwise authorized by the CA system. The first
step authentication is achieved based on whether the signatures contained in the Host
Certificate List along with the signature on the Diffie-Hellman public key can be verified
by the POD and on whether the signatures contained in the POD Certificate List along
with the signature on the Diffie-Hellman public key can be verified by the Host.

If the Host certificate list verifies along with the signature on the Diffie-Hellman public
key, the Host_ID can then be extracted from the certificate. If the POD certificate list
verifies along with the signature on the Diffie-Hellman public key, the POD_ID can then
be extracted from that device certificate.

If any part of the copy protection system fails, including certificate verification, the POD
shall not perform the CA System decryption step (even if the subscriber would
otherwise be authorized to receive the service), the POD module shall then request to
open a session to the MMI resource resident on the Host (if not already open), and then
send a open MMI dialog request. If the Host is in an off state or any non-video viewing
state, it shall deny the dialog open request. When the Host is in a video viewing state, it
shall grant the open MMI dialog request. The POD module shall then send a message
to the Host similar to that shown below in Figure 3.2-B and shall notify the headend CA
System (if possible).

 POD Copy Protection System Page 21

There was a technical problem during the
authorization process.

This product may have some component
failure or may not be designed to be fully
compatible with digital cable television
services. Please contact the
manufacturer or the retailer.

Figure 3.2-B Example CP System Failure Notification message

Thereafter, the failure notification message shall be displayed only if the verification of
the Host Certificate or POD Certificate has failed and 1) the message is selected
through the menu, or 2) the user tunes to a scrambled channel protected by the CA
system.

3.2.3 AUTHENTICATION PHASE 2 – HEADEND REPORT BACK

The POD Module will request Host and POD authentication by headend validation
checks on the POD_ID and Host_ID. The POD CP validation process requires the CA
System to check if the Host_ID and the POD_ID’s are listed in the CRLs stored in the
headend.

3.2.4 AUTHENTICATION PHASE 3 – AUTHENTICATION KEY VERIFICATION

A long-term “Authentication Key” (AuthKeyP and AuthKeyH) is derived based on the
information exchanged between the POD and Host during the first step of
authentication. This Authentication Key is calculated as a function of the Host_ID, the
POD_ID, and the Diffie Hellman pub lic keys

 Both the POD and the Host calculate an AuthKey, as described in the Cryptographic
Functions section (section 4). The POD Module sends a request message to the Host to
request the Authentication Key derived by the Host. If the POD Module confirms that its
derived Authentication Key is the same as the one received from the Host, then the
POD accepts that Host as legitimate. This derived Authentication Key shall be stored in
non-volatile memory, and can be used later in the calculation of the Copy Protection
Key. If a matching AuthKey has not been received within five seconds of the request
message, the POD shall not perform the CA system decryption step (even if the
subscriber would otherwise be authorized to receive the service) and display the MMI
message and report back to the Headend as described above in section 3.2.2.

Authentication at this step is achieved based on the Host being able to prove that it can
derive the same shared DH secret key as the POD.

 POD Copy Protection System Page 22

3.2.5 HEADEND REPORT BACK METHODS

3.2.5.1 ONE-WAY SYSTEM DEVICE REGISTRATION AND VALIDATION

After the POD Module verifies the Host certificate list, the Host_ID can be extracted
from the Host’s device certificate. After the Host Module verifies the POD certificate list,
the POD_ID can be extracted from the POD’s device certificate. Since there is no
upstream connectivity to the headend in a one-way system, the POD Module must rely
on the consumer to report this ID information along with the POD and Host
manufacturer name or number back to the headend, typically by telephone. The POD
communicates to the headend using private messages that are conveyed within the CA
System, so these messages are not defined here. The following registration and
validation protocol shall be used:

1. The POD stores the Host_ID extracted from the Host device certificate and the POD_ID
extracted from the POD device certificate so that they can be compared against the
Validated_Host_ID and Validated_POD_ID, received back from the headend in step 6
below.

2. The POD sends a display message request to the Host. This message contains the Host_ID
and the POD_ID. The last digit (rightmost) displayed in the Host_ID and POD_ID shall be a
single check digit of the ID using the Luhn Check Digit Algorithm described in appendix A.

3. The Host responds with a confirmation message indicating that the message has been
displayed to the consumer. The Host also displays the Host_ID and POD_ID to the user in
decimal format (digits 0-9).

4. The Host_ID and POD_ID must be reported to the cable operator. One method is by
reading the Host_ID and POD_ID to a customer service representative (CSR) over the
telephone. Other methods of transferring these data may be used.

5. The CSR records the pairing between the Host_ID and POD_ID, as received from the user.
The CSR sends the Host_ID validation request to the CA System. The CA System records
the pairing between Host_ID and POD_ID.

6. The CA System holds X.509 Certificate Revocation Lists and checks if the Host_ID and
POD_IDs are listed as revoked.

a) If the Host_ID is not found in the CRL, the CA System re-sends the Host_ID and
POD_ID back to the POD Module in a private authenticated CA System Host_ID
validation message. Once this message has been sent to the POD, the CA System is
allowed to authorize the POD for high value services with EMI values equal to 01, 10, or
11. See section 6, CCI.

b) This Host_ID validation message may be sent back to the POD substantially later in
time than when POD-Host registration begins or the Host_ID is received from the POD.
Until the POD receives this message, the POD shall restrict its authorized services only
to those services with a EMI value of 00.

c) If the Host_ID is found in the CRL, the CA System shall mark that Host_ID as
fraudulent, and is prohibited from authorizing that Host’s associated POD for high value
services.

d) If the POD_ID is found in the CRL, the CA System shall mark that POD_ID as
fraudulent, and is prohibited from authorizing that POD for high value services.

 POD Copy Protection System Page 23

7. The CA System sends an EMM to the POD to authorize appropriate services. In the event
that some of these services have EMI values of 01, 10, or 11, the POD is prohibited from
authorizing1 those services. The POD shall not authorize services with these EMI values
until the Host_ID validation message has been received, even if these services are
authorized in an EMM.

8. The POD authenticates the device validation message, to verify that the message did
originate in the headend.and then compares the Validated_Host_ID with the Host_ID
extracted from the Host device certificate at step 1 above. The Validated_POD_ID is also
compared with the POD_ID extracted from the POD device certificate at step 1 above.

9. The POD shall store the validated Host_ID in non-volatile memory so that headend
validation need not be conducted every time there is a power down.

Given this protocol, the headend always has an opportunity to revoke the services of a
Host using CA System EMMs, and no CRLs need exist in the cable network.
Revocation CRLs are only used in the headend in step 6 above. Further, the CA
System headend can receive new CRLs, look up new Host_IDs, and deauthorize any
compromised Host associated with the POD at any time - all using EMMs. Host
selective service revocation issues are discussed more in detail in Section 5.

The POD shall store the Host_ID validated by the headend in non-volatile memory so
that the headend’s validation need not be conducted every time there is a power down.

3.2.5.2 MANUAL RETURN AUTHENTICATION – ERROR AND OTHER CONDITIONS

The Host has the capability of requesting the unidirectional message screen via the
menu through the application info resource. There are three conditions in which the
unidirectional screen described in above is not valid:

• The Host and POD module have not completed the binding process.

• The Host has an invalid certificate.

• The Host is bidirectional and the POD module has established a reverse path.

It should be noted that the following messages are displayed when diagnostic
messages are requested and will be informational as opposed to friendly user
interfaces. These messages are suggestions only and may be modified to an equivalent
message.

Incomplete Binding

In the event that the Host and POD module have not completed phase one of binding
(validation of the Host certificate) at the time the Host requests the copy protection
message screen, the POD module shall display a message indicating it is not available,
for example:

1 The POD authorizes the Host by decrypting CA-encrypted services and re-encrypting them for the Host. When “the
POD shall not authorize a service for the Host” the POD shall not perform the CA-decryption step (even if the
subscriber would otherwise be authorized to receive the service).

 POD Copy Protection System Page 24

Invalid Certificate

In the event that the POD supplies an invalid certificate to the Host the Host shall
display a message informing the user, for example:

In the event that the Host supplies an invalid certificate to the POD module, the POD
shall request the copy protection message screen and display a message informing the
user, for example:

Normal Diagnostic Operation

If the Host requests the copy protection message screen and both the Host_ID and
POD_ID have been received and authenticated, independent of whether the Host or
system are unidirectional or bidirectional, then the POD module shall display the POD
and Host ID’s, for example:

POD ID: 0-012-760-174-227

Host ID: 1-004-888-381-229

3.2.5.3 TWO-WAY SYSTEM HOST_ID VALIDATION

The POD Module in a two-way system has upstream connectivity to the headend.
Therefore, the POD Module can send the POD_ID and Host_ID directly to the headend
in an authenticated manner without requiring a consumer to read these IDs back to a
CSR over the telephone. The Host_ID is still extracted from the Host certificate after
the Host certificate is verified by the POD Module during the first step of authentication.
In the two-way system, the following registration and validation protocol shall be used:
1. The POD stores the Host_ID extracted from the Host device certificate so it can be

compared against the Host_ID received back from the headend in step 4 below.

Information not Available

POD Certificate Invalid

 Host Certificate Invalid

 POD Copy Protection System Page 25

2. The POD stores the POD_ID extracted from the POD device certificate so it can be
compared against the POD_ID received back from the headend in step 4 below.

3. The POD sends the Host_ID and POD_ID through the upstream OOB or Host modem
resource in a private authenticated CA System message. The headend CA System records
the pairing between Host_ID and POD_ID.

4. The CA System holds X.509 Certificate Revocation Lists (CRLs) and checks if Host_ID and
the POD_ID are listed as revoked.

a) If the Host_ID and the POD_IDs are not found in the CRL, the CA System re-sends the
Host_ID and POD_ID back to the POD Module in a private authenticated CA System
Host_ID validation message. Once this message has been sent to the POD, the CA
System is allowed to authorize the POD for high value services with EMI values equal
to 01, 10, or 11. See section 6, CCI.

b) This Host_ID validation message may be sent back to the POD substantially later in
time than when POD-Host registration begins or the Host_ID is received from the POD.
Until the POD receives this message, the POD shall restrict its authorized services only
to those services with a EMI value of 00.

c) If the Host_ID or POD_ID are found in the CRL, the CA System shall mark that Host_ID
or POD_ID as fraudulent, and is prohibited from authorizing that Host’s associated POD
for high value services

5. The CA System sends an EMM to the POD to authorize appropriate services. In the event
that some of these services have EMI values of 01, 10, or 11, the POD is prohibited from
authorizing those services. The POD shall not authorize services with these EMI values until
the Host_ID validation message has been received, even if these services are authorized in
an EMM.

6. The POD authenticates the Host_ID validation message and then compares the Host_ID
with the Host_ID extracted from the Host device certificate at step 1 above. The
authentication is to verify that the message did originate in the headend.

7. The POD also then compares the POD_ID with the POD_ID extracted from the POD device
certificate at step 2 above. The authentication is to verify that the message did originate in
the headend.

8. The POD shall store the Host_ID and POD_ID, validated by the headend, in non-volatile
memory so that headend validation need not be conducted every time there is a power
down.

Given this protocol, the headend always has an opportunity to revoke using CA System
EMMs, and no CRLs need exist in the cable network. CRLs are used in the headend
only, in step 4. Further, the CA System headend can receive new CRLs, look up new
Host_IDs and POD_IDs, and then revoke selected services of any compromised Hosts
associated with CA System PODs at any time - all using CA System EMMs. Host
selective service revocation issues are discussed in more detail in a later section.

 POD Copy Protection System Page 26

3.3 POWER-UP RE-AUTHENTICATION

At power-up, if the POD detects that it holds an Authentication Key from a previous
binding in non-volatile memory, the POD shall attempt a re-authentication procedure.
This procedure will determine if this is the Host to which the POD was last bound and if
the POD is the same to which the Host was last bound. The POD initiates the re-
authentication by requesting that the Host send its AuthKeyH. If the received AuthKeyH
does not match the POD’s stored AuthKeyP, the POD shall reject the Host and re-
initialize the binding procedure between the POD and Host as described in section 3.2.
If the authentication keys do match, then the certification verification is considered valid,
the private DH Key and authentication keys are preserved, and only the Copy
Protection Key is regenerated.

3.4 POD OPERATION WITH MULTIPLE HOSTS

Each POD shall bind to exactly one Host at a time. No POD shall store two or more
sets of Authentication Keys or other Host-specific information. A given POD can be
removed from a Host and inserted into a different Host at any time. The re-
authentication procedure will indicate a mismatch in authentication keys, and the POD
shall initiate the binding procedure, including full Host Certificate verification. If this POD
is later returned to the previous Host it shall again initiate the binding procedure, as it
has authentication information only on the last Host to which it was bound.

3.5 HOST OPERATION WITH MULTIPLE PODS

Host operation with multiple POD modules is beyond the scope of this document and is
subject to further study.

 POD Copy Protection System Page 27

4. CRYPTOGRAPHIC FUNCTIONS

The basic key negotiation process for POD copy protection is shown in Figure 4.0-A below.

HostPOD

{DHKey} lsb224 {DHKey} lsb224

RndC_module RndC_host RndC_module RndC_host

Diffie Hellman Key Agreement &
Challenge / Response

CA System

DFAST
Processing

DFAST
Processing

DES ECB
Encryption on

MPEG Transport

DES ECB
Decryption on

MPEG Transport

Plain-text after
decryption by CA

system Copy Protected

Cipher-text sent
from POD to Host

Common DFAST Seed
(Ks: 128 bits)

Common DFAST Seed
(Ks: 128 bits)

Copy Protection
Key (Ks_dfast)

(56 bits)

AuthKeyH
AuthKeyP

SHA-1 SHA-1

Copy Protection
Key (Ks_dfast)

(56 bits)

Figure 4.0-A Overall POD Copy Protection

4.1 AUTHENTICATION KEY GENERATION

During the Host authentication process, Diffie-Hellman public keys are exchanged
between POD and Host as a conventional part of the DH protocol. DH public keys
along with the IDs are used to derive the authentication keys which authenticate the DH
exchange and resist “Man in the Middle” attacks. Both POD and Host calculate a 160 bit
value called the Authentication Key or AuthKey. The AuthKey is calculated based on the
64 bit POD Module ID, and the 40 bit Host_ID, and the shared Diffie Hellman Secret
Key (DHKey). The Host transfers its calculation of this value to the POD, where the
POD compares it against the one it calculated from the same information. The POD
proceeds with authentication if and only if its internally calculated version of the AuthKey
is identical to the one it obtains from the Host.

 POD Copy Protection System Page 28

The Diffie-Hellman shared secret key (DHKey) is computed as:

DHKeyP = (DH_pubKeyH) x mod n = (DH_pubKeyP)y mod n = DHKeyH

The POD computes its authentication key by applying the SHA-1 function:

AuthKeyP = SHA-1 [DHKey | Host_ID | POD_ID]

The Host also computes its authentication key by applying the SHA-1 function:

AuthKeyH = SHA-1 [DHKey | Host_ID | POD_ID]

AuthKeyP and AuthKeyH are used in Copy Protection Key Generation, as described in
section 4.2 below.

Authentication Key generation need occur only once (per Host-POD pair) when the
POD and Host are first connected. The resulting AuthKeyP and AuthKeyH values and
Diffie-Hellman Secret Key (DHKey) then need to be stored in non-volatile memory, and
are used to generate transmission keys later in the key derivation step.

4.2 COPY PROTECTION KEY GENERATION

A series of steps is employed to generate and refresh the CP-Key (Ks_dfast) at the
following times:

• At the end of the authentication process;

• Periodically at a rate set by max_key_session_period;

• At every power cycle;

• When initiated by the CA System; and

• At every hard reset.
Highly randomized variables are used as new random numbers (“nonces”). Random
nonces along with IDs are exchanged between the POD and Host interface. A common
Copy Protection Key between the POD and Host is derived from these newly
exchanged random numbers, the Authentication Key (AuthKeyP or AuthKeyH) and the
1024 bit shared secret Diffie-Hellman key (DHKey). The derived common Copy
Protection Key (Ks_dfast) is then used to encrypt/decrypt MPEG data sent from the
POD to the Host.

4.2.1 BASIC KEY GENERATION PROTOCOL

The following procedure shall be followed to generate the CP-Key:

1) POD checks whether a previously derived authentication key is already stored in
dedicated non-volatile memory. If such an AuthKeyP is present, then continue to the next
step. Otherwise, restart the whole authentication process as detailed in Section 3.2.

 POD Copy Protection System Page 29

2) The POD generates its 64 bit random number (N_module) .

3) The POD sends this N_module and its ID (POD_ID) in the clear to the Host.

4) The Host generates its 64 bits random number (N_Host).

5) The Host sends N_Host and its Host_ID in the clear to the POD.

6) The POD checks if the received Host_ID is equal to the previously stored ID. If they are
the same, POD shall proceed with the key generation process; otherwise, the POD shall
only authorize services with EMI values of 00.

7) The POD computes the Copy Protection Key based on long-term keys and newly
exchanged random number using the SHA-1 hash function and the DFAST algorithm, as
described in the following section.

8) The Host computes the Copy Protection Key also based on long-term keys and newly
exchanged random number using the SHA-1 hash function and the DFAST algorithm, as
described in the following section.

4.2.2 POD MODULE COPY PROTECTION KEY

The SHA-1 function is first used to hash the long-term keys, AuthKeyP and the DHKey,
and the random numbers exchanged for key generation. The result is named Ks:

Ks = SHA-1 [AuthKeyP | {DHKey}lsb224 | N_Host | N_module] lsb128

The field {DHKey}lsb224 has length 224 bits (= 512 – 160 (AuthKeyP) – 64 (N_Host) – 64
(N_module)). Detailed information on how to generate AuthKeyP is described in section
4.1. SHA-1 is used as a cryptographic compression function to generate a seed with
the proper 128 bit length for the input to the DFAST engine. The DFAST algorithm is
applied to Ks to produce the 56-bit value of the Copy Protection Key, also known as
Ks_dfast:

CP-Key = Ks_dfast = DFAST [Ks]

DFAST details are specified in a separate document; contact the PHICA. Table 4.2-A
defines the size of keys, as well as the parameters used to derive them.

 POD Copy Protection System Page 30

Table 4.2-A Length of Keys and Parameters Used in the Key Generation

Key or Variable Size (bits) Description

Nonces (N_Host, N_module) 64 bits each Random numbers used to refresh the CP -Key.

Authentication Keys
(AuthKeyH, AuthKeyP)

160 bits
each

Results from the Host authentication process.
It is a long-term key, and is stored in a non-
volatile memory.

Shared Diffie-Hellman Key
(DHKey)lsb224

224 bits The least 224 significant bits of the 1024 bit
shared DH secret key. It is a long-term key,
and is stored in non-volatile memory.

SHA-1 Key (Ks) 128 bits The least significant 128 bits of the 160 bit
SHA-1 output, where the SHA -1 input is the
DHKey, Authentication Key, and nonces from
POD and Host.

Copy Protection Key
(Ks_dfast)

56 bits DFAST output, final encryption and decryption
key

4.2.3 HOST COPY PROTECTION KEY

The Host computes its SHA-1 key based on the Authentication Key (AuthKeyH), the 224
lsb's of the 1024 bit shared secret DH key (DHKey), and the random numbers
exchanged in the key generation. This key is named Ks:

Ks = SHA-1 [AuthKeyH | {DHKey}lsb224 | N_Host | N_module] lsb128

Detailed information on how to generate AuthKeyH is described in section 4.1. SHA-1 is
used as a cryptographic compression function to generate a seed with the proper length
for the DFAST engine. The DFAST algorithm is applied to Ks to produce the 56-bit
value of the Copy Protection Key:

CP-Key = Ks_dfast = DFAST [Ks]

4.3 CP KEY REFRESH

The CP key shall refresh periodically as initiated by the POD. The CA System will set
the refresh period with a parameter, max_key_session_period, transmitted to the POD
by the CA System with maximum security.

For each single CP_Key refresh: after the POD initiates a CP key refresh cycle it shall
start a Key Refresh timer. The POD shall stop scrambling the selected program during
the synchronization of keys. It shall start to encrypt again on the earlier of; successful
completion of the authenticated CP key refresh cycle, or transmitting unencrypted data
for one second. The CCI shall not be changed during this <1 second period.

Each CP Key refresh shall recalculate the content key using a new pair of nonces
(N_Host, N_module) exchanged between the POD and Host.

 POD Copy Protection System Page 31

Note that the POD requests the Host’s Authentication Key at every power up or hard
reset if it has a valid Authentication Key stored in non-volatile memory. The POD
compares the received AuthKeyH to its stored AuthKeyP to detect if it has been inserted
into a new Host or if the Host has been bound to a different POD. If the authentication
keys match, then the POD shall initiate a CP Key refresh. (If a valid AuthKeyP is not
found, the POD initiates a full binding process.)

4.3.1 KEY SESSION PERIOD

The key session period is the period of time in which the POD module and Host utilize
the same key for copy protection. There is a maximum length of this period,
max_key_session_period, programmable by the CA System. The POD module shall
implement a timer which is not dependent on the program selected by the Host, and is
reset anytime new keys are exchanged between the Host and the POD module. If this
timer reaches the value of the max_key_session_period, the POD module shall
initiate a CP Key Refresh. The max_key_session_period shall be implemented as a 16
bit value with a resolution of 10 seconds (one decasecond). If the value of
max_key_session_period is zero, then the maximum key session period is unlimited.
The Host is not aware of max_key_session_period.

4.3.2 KEY REFRESH PERIOD

The POD controls the timing of the Key Refresh cycle. When the POD sends its nonce
to the Host in the CP_data_req() message, the POD starts a Key Refresh Timer. When
the Host receives the CP_data_req(), the Host generates its nonce and sends it to the
POD in the CP_data_cnf() message. The Host shall be implemented such that it shall
transmit a CP_data_cnf() message within one second of receiving a CP_data_req()
message.

The POD and Host shall start the calculation of the Copy Protection keys when that
Host issues the CP_data_cnf(). The POD and Host shall both be implemented such
that each calculates its Copy Protection key within eight seconds. The POD shall send
the CP_sync_req() to the Host when the Key Refresh Timer reaches nine seconds.
This timing ensures that both the POD and Host have a minimum of eight seconds to
complete key calculation. The POD CP_sync_req() message indicates that the POD
has completed calculation of the Copy Protection key . The Host shall issue the
CP_sync_cnf() message when it has received the CP_sync_req() message and has
completed calculation of the Host Copy Protection key.

In a single CP_Key operation, when the POD issues the CP_sync_req() message, the
POD module shall turn off scrambling of the MPEG content output and set the
CP_transport_scrambling_control_field to 00. The Host receives cleartext packets
and will recognize these packets as unencrypted according to MPEG rules. When the
Key Refresh Timer reaches ten seconds, the POD shall immediately return to
scrambling of MPEG packets. If the key refresh has not completed when the Key
Refresh Timer reaches ten seconds, the POD module shall disable CA decryption of
copy protected content until a full CP_Key refresh is completed.

 POD Copy Protection System Page 32

In dual CP_Key operation all protected content shall be scrambled throughout the
CP_Key generation and change process. No one-second clear period shall occur. This
is the primary objective of the dual key capability.

Figure 4.3-A below defines the POD flow during a Key Refresh cycle. Figure 4.3 -B
below defines the Host flow during a Key Refresh cycles.

 POD Copy Protection System Page 33

CP Authentication

POD sends
nonce

CP_data_req()

Host CP_syn_cnf()
recieved?

Key Refresh Timer
>10 sec

POD module
disable CA
decryption

POD module enables
CA decryption and

enables CP
encryption

POD Module starts
CP session time =

max_key_session_period -
key_refresh_timer

CAS request CP
key refresh?

max_key_session_period

=0 ?

max_key_session_period

passed?

Yes

No

No

Yes

Yes

No

Yes

Yes

 POD shall switch
to cleartext

Key Refresh Timer
>= 9 sec

POD Calculates
Copy Protection Key

POD Issues
Sync Request
CP_sync_req()

POD module
initilaizes Key Refresh
Timer to zero seconds

POD recieves
Host nonce

CP_data_req()

Yes

No

No

No

Figure 4.3-A POD CP Key Refresh Session Flow Chart

 POD Copy Protection System Page 34

Host Recieves
CP_data_req()

Host Calculates CP Key

Host recieves
CP_sync_req()

Host sends Host Nonce
in

CP_data_cnf()

Host Issues
CP_sync_cnf()

and transitions to newly
calculated key

Figure 4.3-B. Host CP Key Refresh Flow Chart

4.3.3 CA SYSTEM KEY REFRESH

The POD module shall be capable of initiating a key refresh at the command of the CA
System. This key refresh command shall occur regardless of any other conditions,
excepting that a key refresh is occurring at that time.

4.3.4 KEY REFRESH INITIALIZATION

After the copy protection authorization process has occurred, an initial key refresh shall
occur.

4.3.5 CHANNEL CHANGE

When a channel change occurs, the Host shall treat all CP-scrambled content as if the
EMI is set to "copy never". The Host shall immediately begin using the value of EMI
when it is received from the POD. Channel change shall not cause a key refresh to
occur.

 POD Copy Protection System Page 35

4.3.6 TWO KEY SYNCHRONIZATION MODE (INFORMATIVE)

Optionally, a POD or Host may implement key refresh using a system of EVEN and
ODD CP-Key's. In that case the above described system of going into the clear for one
second is not needed, and is instead replaced with a one second period before a new
key is written into one of the EVEN or ODD key registers. Such a two key system shall
not be fully specified at this time, but shall be fully specified in a future release.

The presence of two CP-Key registers and selection logic for EVEN and ODD CP-Key's
based on MPEG-TS header transport_scrambling_control bits, shall be optional in both
POD and Host. If implemented the transport_scrambling_control bits shall select the
EVEN or ODD key.

It is highly recommended that POD and Host manufacturers build silicon that is capable
of holding both an EVEN and an ODD CP-Key, and is capable of properly selecting the
correct EVEN or ODD key based on the transport_scrambling_control bits. It is further
recommended that all POD and Host devices include a firmware download means to
fully support ODD/EVEN CP-Key refresh when it is fully defined, e.g., for APDUs,
protocols flows, etc.

4.3.7 TRANSPORT SCRAMBLING CONTROL FIELD

The transport_scrambling_control field of the MPEG transport packet provides control
information for key changes. The transport_scrambling_control field bit values for single
CP-Key and dual CP-Key modes shall be defined as in Table 4.3-A.

Table 4.3-A MPEG Transport_scrambling_control values

Bit Values For Single CP-Key Mode For Optional Dual CP-Key Mode

00 No scrambling of TS packet payload No scrambling of TS packet payload

01 Reserved Reserved

10 Reserved TS packet scrambled using EVEN key

11 Transport packet scrambled TS packet scrambled using ODD key

 POD Copy Protection System Page 36

4.4 DIFFIE-HELLMAN KEY EXCHANGE ALGORITHM

4.4.1 ALGORITHM OVERVIEW

Diffie-Hellman Public Key Agreement algorithm provides a method for POD and Host to
compute a long term shared secret that is used in the encryption/decryption key
generation. The Diffie-Hellman protocol provides the system with a cryptographic
property known as “perfect forward secrecy”. Figure 4.4-A illustrates the two-step Diffie-
Hellman operations conducted in the POD, Host and interface between them.

DHKeyP = DHKeyH

System Parameters
generator: g

prime (modulus): n

POD

DH private value
(random x)

DH public value
DH_pubKey P=gx mod n

POD

Agreed Key
DHKey

Step 1

Step 2

Host

DH private value
(random y)

DH public value
DH_pubKeyH=gy mod n

HostHost

Agreed Key
DHKey

Figure 4.4-A Diffie-Hellman Key Agreement Protocol between POD and Host

 POD Copy Protection System Page 37

4.4.2 ALGORITHM IMPLEMENTATION

4.4.2.1 SYSTEM PARAMETER GENERATION [INFORMATIVE]

The length of the modulus (n) is usually chosen to have a comparable level of difficulty
against the best discrete logarithm algorithm. A 1024-bit prime (modulus) is currently
considered sufficient against attack. The length of generator is the same as the length
of modulus.

These constants are provided by the PHICA with the POD-Host Interface License.

4.4.2.2 STEP 1 OPERATIONS

The POD and Host each execute the Diffie-Hellman protocol as follows:

1. The POD randomly generates a private exponent, x, where 0 < x < n, where the
exponent x need not have the full 1024 bit length. The exponent length shall be
at least 160 bits long.

2. The Host randomly generates its private exponent, y, where 0 < y < n, selecting y
to have the length of at least 160 bits.

3. The POD computes its public key value DH_pubkeyP = gx mod n, and sends it to
the Host along with its POD_ID.

4. The Host computes its public key value DH_pubkeyH = gy mod n, and sends it to
POD along with its Host Certificate.

5. The DH public keys are generated in such a way that computing the private
exponent from the public value is computationally infeasible.

4.4.2.3 STEP 2 OPERATIONS

Both POD and Host compute the agreed-upon secret key using the other’s public value,
their own private value, and the system parameters modulus n, as follows:

1. The POD derives the 1024 bit shared key DHKeyP = (DH_pubkeyH)x mod n; and

2. The Host derives the 1024 bit shared key DHKeyH = (DH_pubkeyP)
y mod n;

Even though both the POD and Host are making computations using different private
values (x, y), they end up with the same secret key: DHKeyDHKeyP = (gy)x mod n = g yx mod n = (g

4.4.2.4 DHKEY EXCHANGE AND HOST AUTHENTICATION [INFORMATIVE]

Note that Step 1 operations are performed in Host Authentication Phase 1 described in
section 3.2.2. Also note that the product of Step 2 Operations, the shared DHKeys, are
use for the CP Key generation. CP-Key generation is initiated by the POD only after all
three phases of the Host Authentication have been completed successfully.

4.4.2.5 REPRESENTATION OF LARGE VALUES AS OCTETS [INFORMATIVE]

 POD Copy Protection System Page 38

To represent large parameter values, like the 1024-bit modulus, as a series of octets (bytes) the
most significant bit (MSB) of the first octet should represent the MSB of the value, the least
significant bit (LSB) of the first octet the eighth MSB of the value, continuing until the LSB of the
value becomes the LSB of the last octet. In other words, the first octet in the series has the
most significance in the integer and the last octet has the least significance.

A large parameter z of length k*8 bits should be converted into an octet block PV of
length k such that:

z = ∑
i=1

k

 28(k -i)PVi

where PV1, ..., PVk are the octets of PV from first to last.

4.5 SHA-1 SECURE HASH ALGORITHM

The POD Copy Protection specification employs the RSA signature algorithm with SHA-
1 for all X.509 digital certificates. The POD Copy Protection specification uses F4
(65537 decimal, 010001 Hex) as the public exponent fo r its signing operation. The
Device Root PHICA will employ a modulus length of 2048 bits for signing the
Manufacturer XCA certificates it issues. Manufacturer XCA’s shall employ signature key
modulus lengths of at least 1024 bits, and not greater than 2048 bits in length.

The following functions and operations use the SHA-1 algorithm:

• Host Certificate Signature Verification: the signature algorithm is based on the RSA
digital signature scheme defined in FIPS 180-1, which uses the SHA-1 primitive.

• POD Certificate Signature Verification: the signature algorithm is based on the RSA
digital signature scheme defined in FIPS 180-1, which uses the SHA-1 primitive.

• Authentication key generation as described in section 4.1 above.

• Copy Protection Key generation, as described in section 4.2.

4.6 RANDOM NUMBER GENERATION

If a pseudorandom integer generator is used to generate N_Host and N_module as well
as DH private keys (x and y), it shall be compliant with the SHA-1 based algorithm
described in FIPS PUB 186-1, Appendix 3, Section 3.3. The POD and Host shall each
have a uniquely generated seed value that is set in the factory. A physical random
number generator may be implemented as the seed generator. The seed generator
shall comply with the FIPS PUB 140-1 Section 4.11.1 test for randomness.

4.7 DFAST ALGORITHM

4.7.1 ALGORITHM OVERVIEW

 POD Copy Protection System Page 39

The diagram in Figure 4.0-A at the beginning of this chapter shows how DFAST would
be used. Detailed information on DFAST design and implementation is presented in the
document “DFAST Implementation Description” obtained from the PHICA.

4.7.2 DFAST CHARACTERISTICS

Accepts a 128 bit input value (Ks) and generates 56 bits of output (Ks_dfast, the Copy
Protection Key). This output from the DFAST function is used as the DES ECB key for
copy protection content scrambling and descrambling;

4.8 RSA DIGITAL SIGNATURES

RSA digital signatures shall be computed using block type 01 as specified in PKCS #1
version 1.5, normative reference 9, in section 1.2.1 above.

 POD Copy Protection System Page 40

5. HOST SERVICE REVOCATION MECHANISMS

5.1 SYSTEM ISSUES

This section addresses details of revocation of selected Host services including CRL-
based Host revocation mechanisms, fundamental principles, and the circumstances
under which revocation should occur.

5.2 REVOCATION CIRCUMSTANCES [INFORMATIVE]

The revocation technique is used as a safeguard to prevent copy protected content from
delivery to insecure Hosts. Cases where this might occur include:

1. A fraudulent Host claimed to be compliant with obligations contained in the DFAST
license;

2. An erroneously-designed Host claimed to be compliant with obligations contained in the
DFAST license;

3. Implementations that were compliant at the time they were distributed become non-
compliant because of a change in circumstances (e.g. wide consumer availability of de-
bugging programs or a specific security scheme that has been compromised).

5.3 FRAUDULENT HOST IDENTIFICATION

This POD-CP system requires the POD Module to retrieve the Host Certificate List from
the Host and validate this Host Certificate List. The POD-CP system also requires that
the Host retrieve the POD Certificate List from the POD and validate it. The POD then
reports this Host_ID and the POD_ID to the headend when a POD Module is bound
with a Host and two-way capabilities are available. When two-way capability is not
available, the Host_ID and POD_ID are reported to the headend by the end-user
typically via telephone (touch-tone keypad or voice).

In all cases the POD and Host ID’s shall be reported back to the headend by some
means. Except for the case of a copy protection system failure, an invalid POD
Certificate Data (POD_DevCert and POD_ManCert) or an invalid Host Certificate Data
(Host_DevCert and Host_ManCert) described in section 3.2.2 and the failure to confirm
the Authentication Key described in section 3.3.4, the criterion for identification and
resolution of fraudulent Hosts by the operator are not part of this specification. CRL
based revocation is performed at the headend not locally in the POD or Host.

5.4 CA SYSTEM REVOCATION & SELECTIVE DENIAL OF SERVICES

5.4.1 DEFINITION OF REVOCATION

Revocation is the concept of denying selected services to invalid or suspect Host
devices on the network. This is achieved by not CA authorizing the POD for any high
value content for which the bound Host is denied reception.

 POD Copy Protection System Page 41

Knowing the pairing of the POD to the Host is central to the use of CA System
revocation. In both one-way and two-way systems the CA System Headend can
reliably determine the Host_ID associated with each POD, and can therefore revoke
selected services of any Host.

5.4.2 SELECTIVE SERVICE DENIAL

Fundamentally, services rather than Hosts are revoked. A fraudulent Host can still
legally watch clear services, for example, as well as free special offerings. Revocation
can be described as a means to automatically control whether high value services are
authorized in the specific POD connected to a specific Host.

A revocation authority and CRL-based service revocation mechanism shall be
integrated into the CA System Headend to revoke selected services of a fraudulent or
cloned Host. When a Host is found on a CRL in the Headend, the POD associated with
that Host shall have its authorized services limited to exclude high value content. High
value content is determined by the Copy Control Information defined for that content;
see Table 6.1-B. “High value” content is defined as content with EMI values of 01 (“No
further copying is permitted”), 10 (“One generation copy is permitted”), or 11 (“Copying
is prohibited”). Content marked with EMI value 00 (“Copying not restricted”) is not “high
value”.

The trustworthiness of a Host can be in question due to a number of conditions:
Condition 1. Host authentication protocol failure during POD verification of the Host Certificate.

Condition 2. Host authentication protocol failure to match the Host and POD generated
Authentication Keys.

While any of the conditions above persist, the POD shall operate only in pass-through
or clear mode.

Condition 3. The Headend may not have confirmed that the Host is valid (not listed on any

revocation list). This may be because of real-time processing bottlenecks in the
Headend due to either staffing issues or upstream channel congestion.

During this condition the POD shall enable CA-descrambling of content with EMI=0
only. High value services with EMI equal to 01, 10, or 11 shall not be CA-descrambled
until the Host validation and binding process is complete.

5.5 THE REVOCATION PROCESS

The administrative process for determining whether or not to revoke selected services
of a Host involves a review process through the POD-CP Certificate Authority.

 POD Copy Protection System Page 42

5.6 IMPLEMENTATION IN THE HEADEND

Host selected service revocation is achieved in the POD CPS by processing a
certificate revocation message at the headend. Given the protocols defined in section
6.3 and 6.4, the headend always has the opportunity to revoke selected services of a
compromised Host or POD using CA System EMMs. Further, the CA System headend
can receive new CRLs, look up new Host_IDs and POD_IDs, and then deauthorize
specific services granted to the POD associated with any bad Hosts or PODs at any
time.

Table 5.6-A CRL Based Host and POD Service Revocation

One-way System (Voice) Two-way System Description

RSA based Certificate
Verification

Voice IDs report-back mechanism

IDs vs. CRLs check and return-
back by the headend at any time

Revocation display message to
user

RSA based Certificate
Verification

IDs report-back mechanism

IDs return-back by the headend
at any time

Revocation display message to
user

Compromised Host is listed in CRLs
provided by CableLabs, MSO’s, or
service providers.

CRL based revocation is built in the CA
System in the headend.

If IDs are listed in CRL, a new EMM is
triggered into the system to de-authorize
the POD - preventing services from
being sent to a compromised Host.

 POD Copy Protection System Page 43

6. COPY CONTROL INFORMATION (CCI)

The content provider and the content distributor determine CCI value for each program.
The CA System delivers the CCI securely to the POD module. The POD passes CCI to
the Host through a secure authentication protocol. The Host uses the CCI to control
copy creation, analog output copy control encoding, and to set copy control parameters
on Host outputs.

6.1 CCI DEFINITION

CCI is a single byte, 8 bit, field conveyed from POD to Host. Four of the eight bits are
defined. The remaining four are reserved. The reserved bits shall be set to zero by the
POD as shown in Table 6.1-A. The Host shall use the reserved bit values received from
the POD only for execution of the Authenticated Tunnel Protocol described below. The
Host shall ignore the reserved bit values thereafter indicated .

Table 6.1-A CCI Bit Assignments

CCI Bits # 7 6 5 4 3 2 1 0

POD sets to 0 0 0 0 APS1 APS0 EMI1 EMI0

Host interprets as rsvd rsvd rsvd rsvd APS1 APS0 EMI1 EMI0

6.1.1 EMI - DIGITAL COPY CONTROL BITS

The two LSB’s of the CCI byte are the EMI bits. They shall control copy permissions for
digital copies. The EMI bits shall be supplied to any Host digital output ports for control
of copies made from those outputs. The EMI bits are defined in Table 6.1-B.

Table 6.1-B EMI Values and Content

EMI Value Digital Copy Permission Content Type

00 Copying not restricted Not “High Value”

01 No further copying is permitted. High Value

10 One generation copy is permitted. High Value

11 Copying is prohibited. High Value

 POD Copy Protection System Page 44

6.1.2 APS - ANALOG PROTECTION SYSTEM

Bits 3 and 2 of CCI as shown in Table 6.1-A are the APS bits 1 and 0 respectively. The
Host shall use the APS bits to control copy protection encoding of analog composite
outputs as described in Table 6.1-C.

Table 6.1-C APS Value Definitions

APS Description

00 Copy Protection Encoding Off

01 AGC Process On, Split Burst Off

10 AGC Process On, 2 Line Split Burst On

11 AGC Process On, 4 Line Split Burst On

6.2 ASSOCIATING CCI WITH A SERVICE

The CA System shall securely associate CCI with a specific MPEG Program. The
MPEG Program Number zero shall not be used for programs covered by this
specification.

6.3 CONVEYING CCI FROM HEADEND TO POD

The CA System shall provide a private secure delivery means (e.g. an ECM) to transfer
CCI from the Headend to the POD. This delivery means shall preserve the association
between CCI and MPEG Program Number.

6.4 CONVEYING CCI FROM POD TO HOST

Delivery of CCI from POD to Host shall be authenticated via the exchange of messages
as shown in Figure 6.4-A. The messages are based on a SHA function performed on
the CCI, CP-Key and MPEG Program Number.

 POD Copy Protection System Page 45

Nonce Exchange for
Delivery Authentication

POD Module HOST

Optional CP Key refresh

CCI_N_host Response

Request CCI exchange, CCI_N_module

Authenticated CCI message

Authenticated CCI Acknowlegement

Start 1 second timer

Confirm program_number

Figure 6.4-A CCI Delivery Sequence

6.4.1 CCI DELIVERY INSTANCES

The POD shall send CCI to the Host only after the POD and Host have successfully
bound and negotiated a shared CP-Key. The POD shall initiate CCI transfer to the Host
immediately after:

1. the POD tunes to a new MPEG Program by request of the Host, or

2. the MPEG Program Number changes on a tuned ‘channel’, or

3. any change in the CCI bits during a program, or

4. any change in the MPEG packet ID values that the POD is descrambling.

 POD Copy Protection System Page 46

6.4.2 AUTHENTICATED TUNNEL PROTOCOL

The "authenticated tunnel protocol" is a means of verifying delivery of valid CCI from
POD to Host. The POD and Host shall jointly execute the steps below once for each
transfer of CCI. Any failure of the steps described below shall result in a failed CCI
delivery. If the steps above are not completed before the one-second time-out expires
the POD shall disable CA-descrambling of copy protected content and the Host shall
default to maximal protection of all CP-scrambled content until the CCI delivery protocol
completes successfully.

Step 1. The POD generates a new random number CCI_N_module and starts a 1-second
time-out.

Step 2. The POD sends CCI_N_module, program_number, and a request for CCI_N_Host.

Step 3. The Host generates a new random number CCI_N_Host.

Step 4. The Host replies with CCI_N_Host and program_number (received in step 2 above).

Step 5. The POD calculates two values: CCI_auth to authenticate CCI delivery, and CCI_ack
to authenticate Host acknowledgment of receipt, as:

CCI_auth = SHA-1(CCI | CP-Key | CCI_N_module | CCI_N_Host | program_number)

CCI_ack = SHA-1(CCI | CP-Key | CCI_N_module | CCI_N_Host)

Step 6. The POD transmits CCI_auth, CCI, and program_number to the Host.

Step 7. The Host calculates CCI_auth using the received CCI value and compares it with the
CCI_auth value received from the POD. Failed equivalence generates an error
condition and the Host sets EMI to 11.

Step 8. The Host shall begin controlling it’s outputs based on valid CCI within one second.

Step 9. The Host calculates CCI_ack and sends it to the POD.

Step 10. The POD compares the received CCI_ack with the value calculated in step 5 above.
Failed equivalence generates an error condition.

 POD Copy Protection System Page 47

7. TRANSPORT SCRAMBLING POD TO HOST

MPEG content delivered to the POD module by the Cable network with EMI greater
than zero shall be CP-scrambled. MPEG content which is delivered with EMI equal to
zero, no copying restrictions specified, for example free access off-air broadcast
content, shall be delivered CP-unscrambled from the POD to the Host. Such content
may or may not be CA-scrambled during delivery from the Headend to the POD.

7.1 MPEG SCRAMBLING

The POD processes content flowing from input to output in one or four modes:

• Clear: no change of CA-unscrambled and EMI=00 content which remains 'in-the-
clear'

• CA-only: descrambles CA-scrambled content marked EMI=00 for output 'in-the-clear'

• Rescramble: CA-descrambles and CP-scrambles content marked EMI>0

• Pass-through: no change of CA-scrambled content (leaving it useless to the Host)

The CP-scrambling mode is set as shown in Table 7.4-A.

7.1.1 SCRAMBLING RULES

• DES ECB shall be used to scramble copy protected MPEG programs in the POD
and to descramble them in the Host. Any residual blocks less than 64 bits in size
shall be left in the clear.

• MPEG transport packet headers and adapta tion headers shall not be encrypted.

• The MPEG scrambling bits output from the POD shall be set as described in Table
4.3-A.

• CA-scrambled but unauthorized services and CA-scrambled and authorized but
unselected services shall pass through POD unaltered, and are therefore useless to
the Host.

• CP-scrambling shall only be applied to selected MPEG programs for which EMI is
non-zero

• The POD shall CP-scramble only authorized and selected programs. The POD shall
immediately switch from rescramble mode to pass-through mode when the active
program is deauthorized by the CA System.

• No data shall be double scrambled with both CA and CP-scrambling.

 POD Copy Protection System Page 48

7.2 TRANSPORT PROCESSING

MPEG packet scrambling parity may take on the values 0 or 1 without limitation on CP-
scrambled output from the POD. The POD shall set the MPEG packet scrambling bits
as defined in section Table 4.3-A.

CP-scrambling mode changes (i.e. transitions from "CP-scrambling ON" to "CP-
scrambling OFF/Clear") shall be handled so as to minimize any period of time where
copy protected content is sent unscrambled from POD to Host. If the status of CA-
scrambling (e.g. due to a change in POD entitlement or a change in the scrambling
mode of the MPEG stream input to the POD), then the POD shall alter the mode of its
input CA-descrambling prior to altering its mode of output CP- scrambling.

7.3 TIMING OF SCRAMBLING MODE TRANSITIONS

CP-scrambling mode changes from "CP-scrambling OFF" to "CP-scrambling ON" shall
be accomplished quickly and in no case more than 1.5 seconds after the event that
causes the mode change, e.g., an EMI change from 0 to non-zero. All MPEG packets
of the relevant program shall be CP-scrambling as soon as possible following a EMI
change from 0 to a protected value of 1, 2, or 3. A change from EMI >0 to EMI=00 shall
result in scrambling going inactive within 1.5 seconds.

CA-scrambling may be effected by receipt of encryption management or control
messages or by changes in the CA-scrambling mode of the content. The POD shall
continue to comply with all CP-scrambling requirements while responding to any such
messages or mode changes.

7.4 CP-SCRAMBLING AS A FUNCTION OF CA-SCRAMBLING AND EMI VALUE

The POD shall apply copy protection scrambling of content flowing to the Host as
shown in Table 7.4-A.

Table 7.4-A CP-Scrambling based on CA-Scrambled State and EMI Value

CA Scrambling State EMI Value POD Scrambles Output Comments

Unscrambled 00 No

Unscrambled 01, 10, or
11

No Undesired*

Scrambled 00 No

Scrambled 01, 10, or
11

Yes

* Cable operators should CA-Scramble all programs with non-zero EMI. Only CA-Scrambled
programs will be protected from unauthorized copying.

 POD Copy Protection System Page 49

8. HOST, POD, & HEADEND MESSAGING PROTOCOLS

8.1 MESSAGE PROTOCOL OVERVIEW

CP Key Derivation

Nonce Exchange for Key Generation

POD Module HOST

Open_Session_Request

CP_open_cnf

Open_Session_Response

CP_open_req

Host Authentication

first phase authentication

second phase authentication

third phase authentication

(Host Re-Authentication)

IAP Authentication Information

CP_data_req
CP_data_cnf

CP Synchronization Request

CP Synchonization Response

IDs to headend

Two-way
System

IDs displayed to
user to report to

Headend

One-way
System

Figure 8.1-A Copy Protection Message Protocol Overview

Figure 8.1-A gives an overview of content copy protection protocol. In this overview,
messages start from the POD after the Host recognizes it.

1) The POD module initiates a copy protection (CP) session by sending
open_session_request to the Host. An open_session_response is returned by the Host
to the POD module in order to allocate a session number. If the request cannot be
fulfilled the POD shall treat the Host as if the Host Certificate was invalid.

 POD Copy Protection System Page 50

2) Upon receiving the allocated session number, the POD module checks the copy
protection support capability of the Host. The Host responds to the POD with the type of
CP System it supports. If the Host does not support the resource defined in Table 8.2-H
the POD shall treat the Host as if the Host Certificate was invalid.

3) The POD, if it holds a valid Authentication Key in non-volatile memory, shall attempt to
perform a re-authentication procedure by requesting the Host’s Authentication Key (third
phase authentication.) If the POD’s and the Host’s Authentication Keys match, the
protocol can immediately proceed to step 4. If the keys do not match, the POD carries
out a full Host authentication, performing all three phases.

4) Once the POD and Host have completed the authentication procedure, new random
numbers are exchanged between POD and Host, and a copy protection key can be
generated between them. This key is used to scramble content in the POD module and
descramble it in the Host.

5) After generating its CP Key, the POD module notifies the Host about its intention to start
to transmit the copy protection data. When the Host is ready (meaning the decryption
key has been generated), the Host replies to the POD.

8.2 POD & HOST COMMON MESSAGES

8.2.1 OPENING A SESSION

The POD module requests a session to be opened to a resource on its transport
connection. Since Host provides resources it replies directly with a session number in
its open session response.

Two objects defined at Session Protocol Data Unit (SPDU) layer,
open_session_request() and open_session_response() are used here. Detailed SPDU
data structure and other SPDU objects are defined in section 7.2 of EIA-679-B (Part B)

Table 8.2-A Copy Protection Open Session Information

SPDU Tag / Object Tag
Value
(Hex)

Action Direction

Open_Session_Request() 91 The POD module requests a session of the Copy
Protection resource to be opened.

POD →
Host

Open_Session_Response() 92 The Host responds with a session status. If opened, a
session number is assigned. The session number shall
then be used for all subsequent exchanges of messages
(APDUs) between POD and Host.

POD ←
Host

 POD Copy Protection System Page 51

8.2.1.1 OPEN_SESSION_REQUEST() SYNTAX

Opening a copy protection request uses an object defined in the Session Layer
protocol. The POD module issues this SPDU object to request opening a copy
protection session between the POD and Host.

Table 8.2-B Open_Session_Request() Message Syntax

Message Syntax bits byte
s

Description

open_session_request () {
 Open_session_request_tag 8 1 Has the value of 91 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B (Part B)
section 7. Since resource_identifier() followed
only has 32 bits, length_field() shall have the
following values set:

 size_indicator = 0, length_value = 4

 Resource_identifier() 32 4 Resource_identifier () is defined in EIA-679-B
(Part B) section 8.2.2.

 Resource_identifier() {
 resource_id_type 2 bits
 if (resource_id_type != 3) {
 resource_class 14 bits
 resource_type 10 bits
 resource_version 6 bits
 }
 else {
 private_resource_definer 10 bits
 private_resource_identity 20 bits
 }

} }

As specified in section 7.2.6.1 of EIA-679-B, Part B: the resource_identifier must match
in both class and type of resource that the Host has in its list of available resources.
Copy protection resource coding is listed in Table 8.2-C.

Table 8.2-C Copy Protection Resource Class

Resource Class Type Version Identifier

Copy Protection 176 2 1 00B00081

If the version field of the supplied resource identifier is zero, then the Host shall use the
current version in its list. If the version number in the request is less than or equal to the
current version number in the Host’s list then the current version is used. If the
requested version number is higher than the version in the Host’s list, the Host shall
refuse the request with the appropriate return code as defined in EIA-679-B, part B.

 POD Copy Protection System Page 52

8.2.1.2 OPEN_SESSION_RESPONSE() SYNTAX

The Host issues this object to the POD to allocate a session number or to tell the POD
that its request could not be met.

Table 8.2-D Open_Session_Response() Message Syntax

Message Syntax bits bytes Description
open_session_response () {
 Open_session_response_tag 8 1 Has the value of 92 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B, Part B,
section 7. Since session _status (1 byte),
resource_identifier() (4 bytes), and session_nb (2
bytes) are followed, length_field() shall have the
following values set:

 size_indicator = 0, length_value = 7

 Session_status 8 1 Session status values listed in EIA-679-B, part B.

 Resource_identifier() 32 4 Resource_identifier () is defined Table 8.2-C.

 Session_nb
}

16 2 The Host allocates session number for the
requested session. Value 0 is reserved. The
session_nb shall be used for all subsequent
exchanges of APDUs between the POD
module and Host until session is closed.
When the requested session could not be
opened (session_status != 0), the session_nb
has no meaning.

8.2.2 HOST CAPABILITY EVALUATION

The NRSS Copy Protection Framework requires the POD module to check the Host’s
ability to support the CP System, when the POD module is powered on and before
starting the Key Exchange process.

Two objects, CP_open_req() and CP_open_cnf(), as defined at the Application Protocol
Data Unit (APDU) layer are used here.

Table 8.2-E Host CP Support Capability Evaluation Messages

APDU Tag /
Object

Tag Value
(Hex)

Action Direction

CP_open_req() 9F9000 POD module queries which copy protection system is
supported by Host.

POD → Host

CP_open_cnf() 9F9001 Host replies to POD module. POD ← Host

 POD Copy Protection System Page 53

8.2.2.1 CP_OPEN_REQ() SYNTAX

This APDU object is issued by the POD module to query the Host’s ability to support
various copy protection systems.

Table 8.2-F CP_open_req() Message Syntax

Message Syntax bits byte
s

Description

CP_open_req () {
 CP_open_req_tag 24 3 Has the value of 9F9000 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B, Part B, section 7. Since
there is no other field followed, length_field() shall have the
following values set:

 size_indicator = 0, length_value = 0

}

8.2.2.2 CP_OPEN_CNF() SYNTAX

This object is issued by the Host to the POD module.

Table 8.2-H defines the value of CP_system_id_bitmask. If system 2 is not supported
the POD shall treat the Host as if its certificate was invalid.

Table 8.2-G CP_open_cnf() Message Syntax

Message Syntax bits bytes Description
CP_open_cnf () {
 CP_open_cnf_tag 24 3 Has the value of 9F9001 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B, Part B, section 7. The
length_field() shall have the following values set:

 size_indicator = 0, length_value = 4

 CP_system_id_bitmask 32 4 Values are list in

Table 8.2-H.

}

Table 8.2-H CP_system_id_bitmask Values

CP_system_id_bitmask Bit Number Description
System 1 0 reserved
System 2 1 POD CP System
System 3 2 reserved
System 4 3 reserved
System 5 4 reserved

For an example, if bit number 0, 1 and 3 are set to 1, it means that Host has the
capability of supporting System 1, System 2, and System 4.

 POD Copy Protection System Page 54

8.2.3 COPY PROTECTION KEY GENERATION

The POD module sends a CP-Key generate request to the Host with the POD_ID and
N_module. Upon receipt of this request, the Host shall generate N-Host and send it to
the POD along with the Host_ID. Both the POD and the Host shall then generate a new
CP key, using both nonces and the shared DH private key.

Two objects, CP_data_req() and CP_data_cnf(), as defined at Application Protocol Data
Unit (APDU) layer are used here.

Table 8.2-I CP_data in the Transmission Key Generation Messages

APDU Tag /
Object

Tag Value
(Hex)

Action Direction

CP_data_req() 9F9002 POD module requests the generation of a new transmission
key. This message contains POD_ID and a random nonce
N_module (CP_system_id = 2, send datatype_id = 6, 12, and
receive datatype_id = 5, 11).

POD → Host

CP_data_cnf() 9F9003 Host replies to POD module. The response contains
Host_ID and a random nonce (N_Host) generated by the
Host.

POD ← Host

8.2.3.1 CP_DATA_REQ() SYNTAX IN HOST KEY GENERATION

This APDU object is issued by the POD module to send its ID and random nonce to the
Host to generate a new CP content key.

Table 8.2-J CP_data_req() Message Syntax In the Key Generation Messages

Message Syntax bits byt
es

Description

CP_data_req () {
 CP_data_req_tag 24 3 Has the value of 9F9002 (hex)
 Length_field() 8 1 length_field () is defined in EIA-679-B, Part B,

section 7. size_indicator = 0, length_value = 27
 CP_system_id 8 1 Values are listed in Table 8.2-L: CP_system_id = 2
 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 2.
 For(i=0; i<Send_datatype_nbr; i++) { (48) (2*3)
 Datatype_ID 8

8
1
1

When i = 0, Datatype_id = 6 (POD_ID)
When i = 1, Datatype_id = 12 (N_module)

 Datatype_length 16
16

2
2

When i = 0, Datatype_length = 0x0008
When i = 1, Datatype_length = 0x0008

 For (j=0; j<Datatype_length; j++) (128) (16)
 {
 Data_type 64

64
8
8

When i = 0, Data_type = POD_ID
When i = 1, Data_type = N_module;

 }
 }
 Request_datatype_nbr 8 1 Request_datatype_nbr shall have the value of 2.
 For(i=0; i<Request_datatype_nbr; i++) (16) (2*1)
 {
 Datatype_id 8 1 When i = 0, Datatype_id = 5 (Host_ID)
 8 1 When i = 1, Datatype_id = 11 (N_Host)
 }
}

 POD Copy Protection System Page 55

Table 8.2-K defines data type ID values and data type parameter size.
Table 8.2-K Datatype_ID and Datatype_length Values

Datatype_id id value Size (Bytes)

Manufacturer_id 1 50 (Maximum)

Reserved 2

Reserved 3

Reserved 4

Host_ID 5 5

POD_ID 6 8

Host_ManCert (Host Manufacturer XCA Certificate) 7 2048*

POD_ManCert (POD Manufacturer XCA Certificate) 8 2048*

Reserved 9

Reserved 10

N_Host (Host’s challenge to POD) 11 8

N_module (POD’s challenge to Host) 12 8

DH_pubKeyH (Host DH Public Key) 13 128

DH_pubKeyP (POD DH Public Key) 14 128

Host_DevCert (Host Device Certificate Data) 15 2048*

POD_DevCert (POD Device Certificate Data) 16 2048*

SIGNH(the signature of Host DH public key) 17 128

SIGNP(the signature of POD DH public key) 18 128

CCI_N_host 19 8

Reserved 20

Reserved 21

AuthKeyH (Host Authentication Key) 22 20

AuthKeyP (POD Authentication Key) 23 20

CCI_N_module 24 8

CCI_data 25 1

Program_Number 26 2

CCI_auth 27 20

CCI_ack 28 20

* Certificates shorter than 2048 shall be padded to 2048 bytes by adding NULL bytes
(0x00) at the trailing end. For example a 2000 byte certificate would be padded to 2048
bytes by adding 48 trailling NULL bytes.

 POD Copy Protection System Page 56

Table 8.2-L CP_system_id Values

CP_system_id ID Value (Binary)
No compatible CP system supported XXX0 0000
System 1 XXX0 0001
System 2 XXX0 0010
Systems 3 to 30 XXX0 0011 to XXX1 1110
System 31 XXX1 1111
Message is Encrypted 1XXX XXXX
Message is Not Encrypted 0XXX XXXX

Table 8.2-L, above,defines CP_system_id values. The POD CP System is "System 2".

8.2.3.2 CP_DATA_CNF() SYNTAX IN KEY GENERATION

This object also contains the Host_ID and nonce so the POD module can derive its CP-
Key.

Table 8.2-M CP_data_cnf() Message Syntax In the Key Generation Messages

Message Syntax bits byte
s

Description

CP_data_cnf () {
 CP_data_cnf_tag 24 3 Has the value of 9F9003 (hex)
 Length_field() 8 1 length_field () is defined in EIA-679-B, part B,

section 7. The length_field() shall have the
following values set: size_indicator = 0,
length_value = 21

 CP_system_id 8 1 Values are listed in Table 8.2-L.
 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 2.
 For(i=0; I<Send_datatype_nbr; i++) (48) (2*3)
 {
 Datatype_id 8 1 When i = 0, Datatype_id= 5 (Host_ID)
 8 1 When i = 1, Datatype_id=11 (N_Host)
 Datatype_length 16 2 When i = 0, Datatype_length = 0x0005
 16 2 When i = 1, Datatype_length = 0x0008
 For (j=0; j<Datatype_length; j++) (104) (13)
 {
 Data_type 40 5 When i = 0, Data_type = Host_ID
 64 8 When i = 1, Data_type = N_Host

 }

 }

}

 POD Copy Protection System Page 57

8.2.4 HOST AND POD SYNCHRONIZATION

The NRSS Copy Protection Framework requires POD module to notify the Host about
its intention to start to transmit the copy protection data. When Host is ready, Host
needs to reply to the POD module. Two objects, CP_sync_req() and CP_sync_cnf(), as
defined at Application Protocol Data Unit (APDU) layer are used here.

Table 8.2-N Host and POD module Synchronization Messages

APDU Tag /
Object

Tag Value
(Hex)

Action Direction

CP_sync_req() 9F9004 The POD module notifies the Host when it is
ready to start to transmit the CP data.

POD → Host

CP_sync_cnf() 9F9005 Host replies to the POD module to confirm Host
readiness.

POD ← Host

8.2.4.1 CP_SYNC_REQ() SYNTAX

This object is issued by the POD module to tell the Host that it is ready to send copy
protected data and to check if Host is ready.

Table 8.2-O CP_sync_req() Message Syntax

Message Syntax Bit
s

byte
s

Description

CP_sync_ req () {
 CP_sync_req_tag 24 3 Has the value of 9F9004 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B, part B, section 7. The
length_field() shall have the following values set:

 size_indicator = 0, lengt h_value = 0

}

8.2.4.2 CP_SYNC_CNF() SYNTAX

The CP_sync_cnf() object is issued by the Host to tell POD that Host is ready to accept
copy protected data.

Table 8.2-P CP_sync_cnf() Message Syntax

Message Syntax bits byte
s

Description

CP_sync_ cnf () {
 CP_sync_req_tag 24 3 Has the value of 9F9005 (hex)

 Length_field() 8 1 length_field () is defined in EIA-679-B, part B, section 7. The
length_field() shall have the following values set:

 size_indicator = 0, length_value = 1

 Status_field 8 1 Values are listed in Table 8.2-Q

}

 POD Copy Protection System Page 58

Status_field shall return the status of the CP_sync_req(). If the Host is ready to receive
the incoming stream, then Status_field shall be set to 0x00. Otherwise, it shall be set
to one of the values indicated in Table 8.2-Q.

Table 8.2-Q Status_field Value

Status_field Value

OK 00

Error – No CP support 01

Error – Host Busy 02

Reserved 03-FF

 POD Copy Protection System Page 59

8.3 ONE-WAY SYSTEM HOST AUTHETICATION MESSAGE PROTOCOL

8.3.1 PROTOCOL FLOW OVERVIEW

Host Authentication Messages

CP Key Derivation Messages
CP Key Derivation Messages

POD
POD_ID

HOST
Host_ID

Open_Session_Request()1

Open_Session_Response()2

CP_open_cnf()4

CP_open_req()3

POD sends authentication data request to Host
CP_data_req(): CP_system_id = 2 and send

data: POD_DevCert, POD_ManCert,
signature & DH_pubKeyP and requested

dataType_id = 15, 7, 13, 17

5

Host replies with its authentication response
CP_data_cnf(): Host_CertList, signature

& DH_pubKeyH

6

POD notifies the Host to be ready for the CP data

CP_sync_req()

Host replies to POD that Host is ready

CP_sync_cnf(): Status_field

Host Display Message:

 call 1-800-xxx-xxx
POD_ID = x-xxx-xxx-xxx-xxx
Host_ID = x-xxx-xxx-xxx-xxx

validated Host_ID &
POD_ID

via.
telephone

Cable
Headend

generate random
seed

Display Messages using
MMI resource

generate random
seed

Host Authentication
Key Generation
Use DHKey,etc. to
compute AuthKeyH

Authentication Key
Verification (3rd
phase authentication)
Compute AuthKeyP
using DHKey, validated
IDs, etc. Compare to
AuthKeyH from Host

POD requests Host Authentication Key

7

8

9

10

11

12

CP_data_req(): CP_system_id = 2,
dataType_id = 22

Host replies with its authentication key

CP_data_cnf(): AuthKeyH

POD sends key generation request to Host
CP_data_req(): CP_system_id=2 and

send data: N_module & POD_ID
POD replies with its ID and new nonce

CP_data_cnf(): CP_system_id=1 and
 respond data: N_host & Host_IDCP Content Key

Derivation:
Compute Ks_module
using SHA-1
Compute Copy
Protection Key using
DFAST

generate nonce
N_module for
key derivation

generate nonce
N_host for key
derivation

CP Content Key Derivation:
Compute Ks_module using
SHA-1
Compute Copy Protection Key
using DFAST

Host Certificate Signature
Verification
Check signatures on signed
data and certificate chain
Check if Host certificate
signature is correct:
if NO: reject Host
if Yes: extract Host_ID from
Cert_host

.

Check if Host_ID,
POD_ID are in CRL

EMM revocation

POD Certificate Signature
Verification
Check signatures on signed
data and certificate chain
Check if POD certificate
signature is correct:
if NO: reject POD
if Yes: extract POD_ID from
Cert_POD

Figure 8.3-A One-way System Message Protocol Overview

 POD Copy Protection System Page 60

Figure 8.3-A gives an overview of the CP System message flow protocol in a one-way
system. Full authentication is shown, in which the POD does not have a valid
authentication key at power-up. If the POD does hold a valid authentication key,
message flow would advance from the CP_open_cnf to “POD requests Host
Authentication Key.” Message flow would then proceed to the “CP Key Derivation
Messages” if the POD and Host Authentication Keys matched. If the keys did not
match, message flow would go back to the beginning of “Host Authentication
Messages.”

Table 8.3-A One-way System Message Reference Sections

Message Name Protocol Layer /
Tag Value (hex)

Reference
Section

Purpose

1 Open_Session_Request SPDU / 91 Section 8.2.1.1 Open CP session

2 Open_Session_Response SPDU / 92 Section 8.2.1.2

3 CP_open_req APDU / 9F9000 Section 8.2.2.1 Evaluate Host

4 CP_open_cnf APDU / 9F9001 Section 8.2.2.2

5 CP_data_req APDU / 9F9002 Section 8.3.2.1 POD & Host authentication data

6 CP_data_cnf APDU / 9F9003 Section 8.3.2.2

7 CP_data_req APDU / 9F9002 Section 8.3.3.1 Authentication Key verification

8 CP_data_cnf APDU / 9F9003 Section 8.3.3.2

9 CP_data_req APDU / 9F9002 Section 8.2.3.1 CP Key derivation

10 CP_data_cnf APDU / 9F9003 Section 8.2.3.2

11 CP_sync_req APDU / 9F9004 Section 8.2.4.1 POD & Host Synchronization

12 CP_sync_cnf APDU / 9F9005 Section 8.2.4.2

8.3.1.1 AUTHENTICATION PROTOCOL IMPLEMENTATION

The POD Module initiates the Host authentication protocol after a CP session is open
and the Host’s ability to support copy protection has been evaluated by POD. The Host
authentication is achieved in a three-step process. The first step of authentication is
based on POD being able to verify the Host certificate list signatures and the Host being
able to verify the POD certificate list signatures. The second step of authentication is
based on headend being able to verify that the Host_ID and POD_ID are not included in
CRLs, and the POD being able to confirm the Validated_Host_ID received from the
headend is the same as the one stored locally. The third step of authentication is based
on the POD being able to verify that its Authentication Key is the same as the one
computed by the Host.

At power-up, if the POD holds a valid Authentication Key, it shall utilize the third step of
authentication described above to attempt to perform a re-authentication (steps 17 & 18
below.) If the POD is able to verify that its Authentication Key is the same as the one
stored in the Host, authentication is complete and the POD can proceed with CP key
generation. If the keys do not match, then a full Host authentication shall be performed,
starting with step 1 below.

 POD Copy Protection System Page 61

8.3.1.2 ONE-WAY SYSTEM POD CPS PROTOCOL STEPS - FULL AUTHENTICATION

1. The POD Module initiates the authentication protocol by sending a challenge request to
Host. The POD generates a secret random x, 1 ≤ x ≤ n –2, and sends Host message .
This message contains the POD Certificate List Data (POD_DevCert and
POD_ManCert), a signature of the Diffie-Hellman public key, and the Diffie-Hellman
public key DH_pubKeyP. The request is implemented by the CP_data_req() object, as
defined in APDU layer. The CP_data_req() message used here is detailed in section
8.3.2.1.

2. After receiving CP_data_req(), Host generates a secret random y, 1 ≤ y ≤ n –2, and
sends its reply with its Host Certificate List (Host_DevCert and Host_ManCert), a
signature of the combined Host Diffie-Hellman public keys and Diffie-Hellman public key
DH_pubKeyH to the POD Module. This response is implemented by the object
CP_data_cnf() object, as detailed in section 8.3.2.2.

3. The POD Module checks if Host Certificate List is valid by:

• Checking the value of the certificate type or format field; and

• The POD verifies the Host’s certificates (Host_DevCert and Host_ManCert), which is
a sequence (chain) of X.509.v3 certificates, with the POD's device certificate
signature first followed by its Manufacturer Device XCA’s certificate signature
second, and the PHICADevice Root certificate signature last..

4. The Host checks if POD certificate is valid by:

• Checking the value of the certificate type or format field; and

• The Host verifies the POD’s certificates (POD_DevCert and POD_ManCert), which is
a sequence (chain) of X.509.v3 certificates, with the POD's certificate signature first
followed by its Manufacturer Device XCA’s certificate signature second, and the
PHICA Device Root certificate signature last.

5. If Host_DevCert is valid, then the POD extracts Host_ID from the Host device certificate.

6. If POD_DevCert is valid, then the Host extracts POD_ID from the POD device certificate.

7. The POD extracts the Host’s public key from the Host_device certificate, and then uses
it to verify the signature: SIGNH (DH_pubKeyP, DH_pubKeyH)

8. The Host extracts the POD’s public key from the POD_device certificate, and then uses
it to verify the signature: SIGNP (DH_pubKeyP).

9. The POD and the Host verify the RSA signature on these received messages and this
proves that the messages were signed using the appropriate private key.

10. The POD Module opens an MMI dialog to present the POD_ID and Host_ID to the
subscriber, typically with a telephone number, for manual communication to the
headend.

11. (Host - > Cable Headend) The end-user will call the service provider and report the
Host_ID and POD_ID via telephone; see section 3.2.5.1. Detailed operational
requirements and message syntax are outside the scope of this document.

12. (Cable Headend CRL Checking: second step of authentication) Check if Host_ID and
POD_ID are in the headend CRLs. Validate the Host/POD ID’s. This check may not
occur in real time; see section 3.2.5.1.

 POD Copy Protection System Page 62

13. (Cable Headend - > POD) Send EMM to authorize the POD; see section 3.2.5.1.

14. (Cable Headend - > POD) Headend sends validated IDs back to the POD Module.
Detailed operational requirements and message protocol/type/syntax are outside the
scope of this document. See section 3.2.5.1.

15. The Host computes the DH shared secret key DHKey from its private exponent, y, and
DH_pubKeyP and then calculates its Authentication Key AuthKeyH based on DHKey,
POD_ID and Host_ID as described in section 4.1 ,.

16. The POD computes the DH shared secret key DHKey from its private exponent, x, and
DH_pubKeyH and then calculates its Authentication Key AuthKeyP based on DHKey,
POD_ID and Host_ID as described in section 4.1.

17. The POD sends a message to Host to request the Authentication Key AuthKeyH
computed by the Host usingCP_data_req() as detailed in section 8.3.3.1.

18. The Host sends its response AuthKeyH to the POD Module by using the message
CP_data_cnf(). This response message is detailed in section 8.3.3.2.

19. The POD compares AuthKeyP to AuthKeyH. If they match the POD continues with CP
key derivation; otherwise the POD shall respond to failure of the CP system as
described in section 3.2.2.

8.3.2 HOST AUTHENTICATION MESSAGES

Two objects, CP_data_req() and CP_data_cnf(), as defined at Application Protocol Data
Unit (APDU) layer are used to exchange the authentication messages.

Table 8.3-B Host Authentication Messages

APDU Tag /
Object

Tag Value
(Hex)

Action Direction

CP_data_req() 9F9002 POD module sends its authentication data to Host. POD → Host

CP_data_cnf() 9F9003 Host replies to POD module. POD ← Host

8.3.2.1 CP_DATA_REQ() SYNTAX IN HOST AUTHENTICATION REQUEST MESSAGE

This APDU object is issued by the POD module to send its authentication data to the
Host. The POD Certificate Data (POD_DevCert and POD_ManCert),a signature of the
POD Diffie-Hellman public key, and the Diffie-Hellman public key (DH_pubKeyP) are
included in this message.
POD - > Host:

 DH_pubKeyP, SIGNP (DH_pubKeyP), POD_DevCert, POD_ManCert.

 POD Copy Protection System Page 63

Table 8.3-C CP_data_req in the Host Authentication Request Message

Message Syntax bits bytes Description

CP_data_req () {

 CP_data_req_tag 24 3 Has the value of 9F9002 (hex)

 Length_field() 24 3 Defined by and with values set to:

 Size_indicator = 1 (1 bit, bslbf);

 Length_field_size = 2 (7 bits, uimsbf);

 Length_value_byte[0] = 17 (8 bits, bslbf);

 (most significant byte)

 Length_value_byte[1] = 19 (8 bits, bslbf);

 (least significant byte)

(message size = 4371 bytes from CP_system_ID)

 CP_system_id 8 1 CP_system_id = 2 (POD CPS)

 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 4

 For(i=0; i<Send_datatype_nbr; i++) { (96) (12)

 Datatype_ID 8

8

8

8

1

1

1

1

When i = 0, Datatype_ID has the value of 16
(POD_DevCert);

When i = 1, Datatype_ID has the value of 8
(POD_ManCert);

When i = 21, Datatype_ID has the value of 14
(DH_pubKeyP);

When i = 3, Datatype_ID has the value of 18
(SIGNP);

 Datatype_length 16

16

16

16

2

2

2

2

When i = 0, Datatype_length has the value of 2048;

When i = 1, Datatype_length has the value of 2048;

When i = 2, Datatype_length has the value of 128;

When i = 3, Datatype_length has the value of 128;

 For (j=0; j<Datatype_length; j++) { (4352)

 Data_type 16384

16384

1024

1024

2048

2048

128

128

When i = 0, Data_type = POD_DevCert;

When i = 1, Data_type = POD_ManCert;

When i = 2, Data_type = DH_pubKeyP;

When i = 3, Data_type = SIGNP;
 }
 }
 Request_datatype_nbr 8 1 Request_datatype_nbr shall have the value of 4.

 For(i=0; i<Request_datatype_nbr;
i++) {

(32) (4)

 Datatype_ID 8

8

8

8

1

1

1

1

When i = 0, Datatype_ID has the value of 15

(Host_DevCert)

When i = 1, Datatype_ID has the value of 7

(Host_ManCert)

When i = 2, Datatype_ID has the value of 13

(DH_pubKeyH).

When i = 3, Datatype_ID has the value of 17
(SIGNH).

 }
}

 POD Copy Protection System Page 64

8.3.2.2 CP_DATA_CNF() SYNTAX IN HOST AUTHENTICATION RESPONSE MESSAGE

This APDU object is issued by the Host to send its response data to the POD. Host’s
certificate list(Host_DevCert and Host_ManCert), a signature of the POD and Host
Diffie-Hellman public key, and Diffie-Hellman public key (DH_pubKeyH) are included in
this message.

Host -> POD:

 DH_pubKeyH, SIGNH (DH_pubKeyH, DH_pubKeyP), Host_DevCert, Host_ManCert

Table 8.3-D CP_data_cnf in the Host Authentication Response Message

Message Syntax bits bytes Description

CP_data_cnf () {
 CP_data_cnf_tag 24 3 Has the value of 9F9003 (hex)

 Length_field() 24 3 Defined by and with values set to:

 Size_indicator = 1 (1 bit, bslbf);

 Length_field_size = 2 (7 bits, uimsbf)

 Length_value_byte[0] = 17 (8 bits, bslbf)

 (most significant byte)

 Length_value_byte[1] = 14 (8 bits, bslbf)

 (least significant byte)

(message size = 4366 bytes after length bytes)

 CP_system_id 8 1 CP_system_id = 2 (POD CPS)

 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 4

 For(i=0; i<Send_datatype_nbr; i++) { (96) (12)

 Datatype_ID 8

8

8

8

1

1

1

1

When i = 0, Datatype_ID has the value 15

(Host_DevCert);

When i = 0, Datatype_ID has the value 7

(Host_ManCert);

When i = 1, Datatype_ID has the value 13

(DH_pubKeyH);

When i = 2, Datatype_ID has the value 17 (SIGNH);

 Datatype_length 16

16

16

16

2

2

2

2

When i = 0, Datatype_length has the value of 2048

When i = 1, Datatype_length has the value of 2048

When i = 2, Datatype_length has the value of 128

When i = 3, Datatype_length has the value of 128

 For (j=0; j<Datatype_length; j++) { 34816 (4352)

 Data_type 16384

16384

1024

1024

2048

2048

128

128

When i = 0, Data_type = Host_DevCert;

When i = 1, Data_type = Host_ManCert;

When I = 2, Data_type = DH_pubKeyH;

When i = 3, Data_type = SIGNH
 }
 }
}

 POD Copy Protection System Page 65

8.3.3 HOST AUTHENTICATION KEY VERIFICATION MESSAGES

Two objects, CP_data_req() and CP_data_cnf(), as defined at Application Protocol Data
Unit (APDU) layer, are used for the POD module to obtain the authentication key from
the Host.

Table 8.3-E Host Authentication Key Verification Messages

APDU Tag /
Object

Tag Value
(Hex)

Action Direction

CP_data_req() 9F9002 POD module requests Host authentication key. POD → Host

CP_data_cnf() 9F9003 Host replies to POD module. POD ← Host

8.3.3.1 CP_DATA_REQ() IN THE AUTHENTICATION KEY VERIFICATION REQUEST MESSAGE

This APDU object is issued by the POD module to send its authentication key request to
the Host.

Table 8.3-F CP_data_req in the Authentication Key Verification Request Message

Message Syntax bits byt
es

Description

CP_data_req () {
 CP_data_req_tag 24 3 Has the value of 9F9002 (hex)
 length_field() 8 1 Length_field () is defined EIA-679-B, part B, section 7.

The length_field() in this message shall have the
following values set:
 size_indicator = 0, length_value = 4

 CP_system_id 8 1 CP_system_id = 2
 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 0.
 Request_datatype_nbr 8 1 Request_datatype_nbr shall have the value of 1.
 For(i=0; i<Request_datatype_nbr;
i++) {

(8) (1)

 Datatype_ID 8 1 Datatype_ID has the value of 22 (AuthKeyH, see
Table 8.2-K).

 }
}

 POD Copy Protection System Page 66

8.3.3.2 CP_DATA_CNF() IN THE AUTHENTICATION KEY VERIFICATION RESPONSE MESSAGE

This APDU object is issued by the Host to send its authentication key (AuthKeyH) to the
POD.

Table 8.3-G CP_data_cnf in the Authentication Key Verification Response Message

Message Syntax bits bytes Description
CP_data_cnf () {
 CP_data_cnf_tag 24 3 Has the value of 9F9003 (hex)
 length_field() 8 1 length_field () is defined in EIA-679-B, part B,

section 7. The length_field() in this message shall
have the following values set:
 size_indicator = 0, length_value = 25

 CP_system_id 8 1 CP_system_id = 2
 Send_datatype_nbr 8 1 Send_datatype_nbr shall have the value of 1.
 For(i=0; i<Send_datatype_nbr;
i++) {

(16) (2)

 Datatype_ID 8 1 Datatype_ID has the value of 22 (AuthKeyH, see
Table 8.2-K)

 Datatype_length 16 2 Datatype_length has the value of 20 (see Table
8.2-K)

 For (j=0; j<Datatype_length; j++)
{

 Data_type 160 20 Data_type = AuthKeyH (see Table 8.2-K)
 }
 }
}

 POD Copy Protection System Page 67

8.4 TWO-WAY SYSTEM HOST AUTHENTICATION MESSAGE PROTOCOL

8.4.1 PROTOCOL FLOW OVERVIEW

Host Authentication Messages

CP Key Derivation Messages
CP Key Derivation Messages

POD
POD_ID

HOST
Host_ID

Open_Session_Request()1

Open_Session_Response()2

CP_open_cnf()4

CP_open_req()3

POD sends authentication data request to Host

5

Host replies with its authentication response

CP_data_cnf(): Host_CertList,
signature, and DH_pubKeyH

6

POD notifies the Host to be ready for the CP data

CP_sync_req()

Host replies to POD that Host is ready

CP_sync_cnf(): Status_field

Cable
Headend

generate
random seed

generate random
seed

Host Authentication
Key Generation
Use DHKey, etc. to
Compute AuthKeyH

Authentication Key Verification
(3rd phase of authentication)
Compute AuthKeyP using DHKey,
validated IDs, etc. Compare to
AuthKeyH from Host

POD requests Host Authentication Key

10

11

12

CP_data_req(): CP_system_id = 2,
dataType_id = 22

Host replies with its authentication key

CP_data_cnf(): AuthKeyH

POD sends key generation request to Host

CP_data_req(): CP_system_id = 2 and
send dataType_id: N_module & POD_ID

request dataType_id = 12, 5

POD replies with its ID and new nonce
CP_data_cnf(): CP_system_id = 2 and

 send N_host & Host_ID
CP Key Derivation:
Compute Ks_module
using SHA-1
Compute Copy
Protection Key using
DFAST

generate nonce
N_module for
key derivation

generate nonce
N_host for key
derivation

CP Key Derivation:
Compute Ks_module using
SHA-1
Compute Copy Protection
Key using DFAST

7

8

9

Headend Validation
(2nd phase authentication)
send IDs to headend;
compare ID received from
headend with the local value

Host Certificate Verification
(1st phase authentication):
Check the certificate format
Check signatures on signed
data and certificate chain
Validate that Host certificate
signature is correct
Extract Host_id from
Cert_hostauthenticated

ID messages

Check if
POD_ID, Host ID

are in CRL

Validated ID's
EMM Revocation

POD Certificate Verification
(1st phase authentication):
Check the certificate format
Check signatures on signed
data and certificate chain
Validate that POD certificate
signature is correct
Extract POD_id from
Cert_POD

CP_data_req(): CP_system_id = 2
send data: POD_DevCert, POD_ManCert,
signature, DH_pubKeyP and requested

dataType_id = 15, 7, 13, 17

Figure 8.4-A Two-way System Protocol Flow Overview

 POD Copy Protection System Page 68

Figure 8.4-A shows an overview of the POD CP System Protocol message flow for
systems operating with automated report-back. The figure depicts full authentication, in
which the POD does not have a valid authentication key at power-up. If the POD does
hold a valid authentication key, message flow would advance from the CP_open_cnf to
“POD requests Host Authentication Key.” Message flow would then proceed to the “CP
Key Derivation Messages” if the POD and Host Authentication Keys matched. If the
keys did not match, message flow would go back to the beginning of “Host
Authentication Messages.”

Table 8.4-A Two-way System Message Reference Sections

Message Name Protocol Layer /
Tag Value(hex)

Reference
Section

Purpose

1 Open_Session_Request SPDU / 91 Section 8.2.1.1 Open CP session

2 Open_Session_Response SPDU / 92 Section 8.2.1.2

3 CP_open_req APDU / 9F9000 Section 8.2.2.1 Evaluate Host

4 CP_open_cnf APDU / 9F9001 Section 8.2.2.2

5 CP_data_req APDU / 9F9002 Section 8.3.2.1 POD & Host authentication data

6 CP_data_cnf APDU / 9F9003 Section 8.3.2.2

7 CP_data_req APDU / 9F9002 Section 8.3.3.1 Authentication Key verification

8 CP_data_cnf APDU / 9F9003 Section 8.3.3.2

9 CP_data_req APDU / 9F9002 Section 8.2.3.1 CP Key derivation

10 CP_data_cnf APDU / 9F9003 Section 8.2.3.2

11 CP_sync_req APDU / 9F9004 Section 8.2.4.1 POD & Host Synchronization

12 CP_sync_cnf APDU / 9F9005 Section 8.2.4.2

8.4.2 HOST AUTHENTICATION PROTOCOL IMPLEMENTATION

Similar to the one-way system, the POD CP System Host authentication in a two-way
system is achieved in a three-step process. The first step of authentication is based on
the certificate signature verification. The second step of authentication is based on
Headend being able to confirm that the Host_ID is not included in CRLs, and the POD
being able to confirm the Host_ID received from Headend is the same as the one stored
locally. The third step of authentication is based on the POD being able to verify that its
Authentication Key is the same as the one computed by the Host.

As with the one-way system, the POD shall attempt to perform a re-authentication at
power-up if it holds a valid Authentication Key, starting from step 16 below. If the POD
is able to verify that its Authentication Key is the same as the one stored in the Host,
authentication is complete and the POD can proceed with CP key generation. If the
keys do not match, the POD shall initiate Full Authentication starting with step 1 below.

The only difference between a one-way system and a two-way system is that in a one-
way system, Host_ID and POD_ID are reported to the Headend via telephone system;
in a two-way system, Host_ID and POD_ID are sent to the Headend via a private CA
message.

 POD Copy Protection System Page 69

8.4.2.1 TWO-WAY SYSTEM POD CPS PROTOCOL STEPS - FULL AUTHENTICATION

1. The POD Module initiates the authentication protocol by sending a challenge request to
the Host. The POD generates a secret random x, 1 ≤ x ≤ n –2, and sends the message.
This challenge request contains the POD Certificate List (POD_DevCert and
POD_ManCert), a signature of the combined Diffie-Hellman public key and POD_ID and
a Diffie-Hellman public key DH_pubKeyP. The request is implemented by the
CP_data_req() object, as defined in APDU layer. The CP_data_req() message is
detailed in section 8.3.2.1.

2. After receiving CP_data_req(), Host generates a secret random y, 1 ≤ y ≤ n –2, and
sends its reply with its Host Certificate List (Host_DevCert and POD_ManCert), a
signature of the combined POD and Host Diffie-Hellman public keys with Host_ID and
Diffie-Hellman public key DH_pubKeyH to the POD Module. This response is
implemented by the object CP_data_cnf() object, as detailed in section 8.3.2.2.

3. The POD Module checks if Host certificate is valid by:

• Checking the value of the certificate type or format field; and

• The POD verifies the Host’s certificates (Host_DevCert and Host_ManCert), which is
a sequence (chain) of X.509.v3 certificates, with the POD's certificate signature first
followed by its Manufacturer Device XCA’s certificate signature second, and the
PHICA Device certificate signature last.

4. The Host checks if POD certificate is valid by:

• Checking the value of the certificate type or format field; and

• The Host verifies the POD’s certificates (POD_DevCert and POD_ManCert), which is
a sequence (chain) of X.509.v3 certificates, with the POD's certificate signature first
followed by its Manufacturer Device XCA’s certificate signature second, and the
PHICA Device certificate signature last.

5. If POD_DevCert is valid, then the POD extracts POD_ID from the POD device certificate

6. If Host_DevCert is valid, then the POD extracts Host_ID from the Host device certificate.

7. The POD extracts the Host’s public key from the Host_Cert, and then uses it to verify the
signature: SIGNH (DH_pubKeyP, DH_pubKeyH).

8. The Host extracts the POD’s public key from the POD_Cert, and then uses it to verify
the signature: SIGNP (DH_pubKeyP).

9. The POD and the Host verify the RSA signature on these received messages and this
proves that the messages were signed using the appropriate private key.

10. (POD → Cable Headend) POD sends Host_ID, POD_ID, and Host/POD Manufacturer
information to the headend in an authenticated message.

11. (Cable Headend CRL Checking: second step of authentication) Check if Host_ID and
POD_ID are in the CRLs. This check may not occur in real time; see Section 3.2.5.2.

12. (Cable Headend → POD) Send EMM to authorize the POD; see section 3.2.5.2.

13. (Cable Headend → POD) Headend sends validated ID(s) back to the POD Module.
Detailed operational requirements and message protocol/type/syntax are outside the
scope of this document. See section 3.2.5.2.

 POD Copy Protection System Page 70

14. The Host computes the DH shared secret key DHKey from its private exponent, y, and
DH_pubKeyP and then calculates its Authentication Key AuthKeyH by applying the SHA-
1 hash function to the DHKey, Host_ID and POD_ID as described in section 4.1.

15. The POD computes the DH shared secret key DHKey from its private exponent, x, and
DH_pubKeyH and then calculates Authentication Key AuthKeyP by applying the SHA-1
hash function to the DHKey, Host_ID and POD_ID as described in section 4.1.

16. The POD sends a message to Host to request the Authentication Key AuthKeyH
computed by the Host. This request message is implemented by the object
CP_data_req() object, as detailed in section 8.3.3.1

17. The Host sends its response AuthKeyH to the POD Module by using the message
CP_data_cnf(). This response message is detailed in section 8.3.3.2.

18. The POD compares AuthKeyP to AuthKeyH. If they match the POD continues with CP
key derivation; otherwise the POD shall respond to failure of the CP system as
described in section 3.2.2.

8.5 CCI SIMPLE AUTHENTICATION TUNNEL PROTOCOL (SATP) MESSAGES

The simple authentication tunnel protocol is a two-pass protocol. First, keys required by
the SATP are generated and passed. Second, CCI is transmitted to the Host with a
fingerprint appended to the CCI byte. In detail, the POD generates a nonce and sends
it in a request message to the Host to generate a nonce. The Host generates a nonce
and sends it back in a reply message. Then the POD calculates a fingerprint using the
CCI value, program number and each nonce and sends the CCI value with the
fingerprint appended in a data request message. Finally, the Host sends a reply
message without a data payload.

Table 8.5-A CCI Simple Authentication Tunnel Protocol Messages

APDU Tag
/ Object

Tag
Value
(Hex)

Action Direction

CP_data_req 9F9002 POD module requests the generation of a new 8 byte random number. The
message contains the random nonce generated by the POD (CCI_N_module)
and the program number (program_number), the same one found in the
CA_pmt_req() message. (CP_system_id = 2, send datatype_id = 24, 26, and
request datatype_id = 19, 26).

POD → Host

CP_data_cnf 9F9003 Host replies to POD module with the requested data types. The response
contains the random nonce gernerated by the Host (CCI_N_Host) and the
program number (program_number). (CP_system_id = 2, send datatype_id =
19, 26).

POD ← Host

CP_data_req 9F9002 POD module sends the CCI payload (CCI_data), the program number
(program_number) and the calculated message digest (CCI_auth).
(CP_system_id = 2, send datatype_id = 25, 26, 27, request datatype_id=26,
28).

POD → Host

CP_data_cnf 9F9003 Host replies to POD module with CCI_ack. (CP_system_id = 2, send
datatype_id=26, 28)

POD ← Host

 POD Copy Protection System Page 71

Table 8.5-B CP_data_req() Message Syntax in SATP Key Generation

Message Syntax bits byte
s

Description

CP_data_req(){
 CP_data_req_tag 24 3 Has the value of 0x9F9002.
 length_field() 8 1 Has the value of 0x15. size_indicator = 0, length_value

=21
 CP_system_id 8 1 Has the value of 2. Values are listed in Table 8.2-L.

 Send_datatype_nbr 8 1 Has the value of 2.
 for(i=0; i<Send_datatype_nbr; i++)
 {
 Datatype_id 8 1 i = 0, Datatype_id has the value of 24 (CCI_N_module).
 8 1 i = 1, Datatype_id has the value of 26 (program_number).
 Datatype_length 16 2 i = 0, Datatype_length has the value of 0x0008.
 16 2 i = 1, Datatype_length has the value of 0x0002.
 for (j=0; j<Datatype_length; j++)
 {
 Data_type 64 8 When i = 0, Data_type = CCI_N_module.
 16 2 When i = 1, Data_type = program_number.
 }
 }
 Request_datatype_nbr 8 1 Has the value of 2.
 for(i=0; i<Request_datatype_nbr; i++)
 {
 Datatype_id 8 1 When i=0, Datatype_id has the value 19 (CCI_N_Host).
 8 1 When i=1, Datatype_id has the value 26

(program_number).
 }
}

Table 8.5-C CP_data_cnf() Message Syntax in CCI SATP Key Generation

Message Syntax bits byte
s

Description

CP_data_cnf(){
 CP_data_cnf_tag 24 3 Has the value of 0x9F9003.
 length_field() 8 1 Has the value of 0x12. size_indicator = 0, length_value =

18
 CP_system_id 8 1 Has the value of 2. Values are listed in Table 8.2-L

 Send_datatype_nbr 8 1 Has the value of 2.
 for(i=0; i<Send_datatype_nbr; i++)
 {
 Datatype_id 8 1 i = 0, Datatype_id has the value of 19 (CCI_N_Host).
 8 1 i = 1, Datatype_id has the value of 26 (program_number).
 Datatype_length 16 2 i = 0, Datatype_length has the value of 0x0008.
 16 2 i = 1, Datatype_length has the value of 0x0002.
 for (j=0; j<Datatype_length;
j++)

 {
 Data_type 64 8 When i = 0, Data_type = CCI_N_Host.
 16 2 When i = 1, Data_type = program_number.
 }
 }
}

 POD Copy Protection System Page 72

Table 8.5-D CP_data_req() Message Syntax in CCI SATP Transmission

Message Syntax bits bytes Description
CP_data_req(){
 CP_data_req_tag 24 3 Has the value of 0x9F9002.
 length_field() 8 1 Has the value of 0x23. size_indicator = 0, length_value

= 35
 CP_system_id 8 1 Has the value of 2. Values are listed in Table 8.2-L.
 Send_datatype_nbr 8 1 Has the value of 3.
 for(i=0; i<Send_datatype_nbr; i++)
 {
 Datatype_id 8 1 i = 0, Datatype_id has the value of 25 (CCI_data).
 8 1 i = 1, Datatype_id has the value of 26 (program_number).
 8 1 i = 2, Datatype_id has the value of 27 (CCI_auth).
 Datatype_length 16 2 i = 0, Datatype_length has the value of 0x0001
 16 2 i = 1, Datatype_length has the value of 0x0002
 16 2 i = 2, Datatype_length has the value of 0x0014
 for (j=0; j<Datatype_length; j++)
 {
 Data_type 8 1 When i = 0, Data_type = CCI_data.
 16 2 When i = 1, Data_type = program_number.
 160 20 When i = 1, Data_type = CCI_auth.
 }
 }
 Request_datatype_nbr 8 1 Has the value of 2.
 for(i=0; i<Request_datatype_nbr; i++)
 {
 Datatype_id 8 1 When i=0, Datatype_id has the value 28 (CCI_ack).
 Datatype_id 8 1 When i=0, Datatype_id has the value 26

(program_number).
 }
}

Table 8.5-E CP_data_cnf() Message Syntax in CCI SATP Transmission

Message Syntax bits bytes Description
CP_data_cnf(){
 CP_data_cnf_tag 24 3 Has the value of 0x9F9003.
 length_field() 8 1 Has the value of 0x1E, size_indicator = 0, length_value =

30
 CP_system_id 8 1 Has the value of 2. Values are listed in Table 8.2-L.
 Send_datatype_nbr 8 1 Has the value of 2.
 for(i=0; i<Send_datatype_nbr; i++)
 {
 Datatype_id 8 1 i = 0, Datatype_id has the value of 28 (CCI_ack).
 8 1 i = 1, Datatype_id has the value of 26 (program_number).
 Datatype_length 16 2 i = 0, Datatype_length has the value of 0x0014.
 16 2 i = 1, Datatype_length has the value of 0x0002.
 for (j=0; j<Datatype_length;
j++)

 {
 Data_type 160 20 When i = 0, Data_type = CCI_ack.
 16 2 When i = 1, Data_type = program_number.
 }
 }
}

 POD Copy Protection System Page A

Appendix A. Luhn Check Digit (Norminative)

The Luhn check digit is appended to each ID

The Luhn check digit is calculated using the following algorithm*.

1. Convert the value into decimal format.
2. Double the value of alternate digits beginning with the first right hand digit (least

significant digit) and moving left.
3. Add the individual digits comprising the products obtained in step 2 to each of the

unaffected digits in the original number.
4. Subtract the total obtained in step 3 from the next higher number ending in 0.

This is equivalent to calculating the “tens complement” of the low order digit of
the total. If the total obtained in step 3 is a number ending in 0, then the check
digit is 0.

Example:

For the 40 bit Host_ID 0x01 2997 2A1F (hexadecimal):

1. Convert to the 10 digit decimal value 4,992,739,871.

2. Separate this decimal number into odd and even digits starting from the right

(least significant digit):
digit #: 10987654321
'odd' digits: 9,2,3,8,1
'even' digits: 4,9,7,9,7

3. Multiply each 'odd' digit by 2:

 9, 2, 3, 8, 1 → 18, 4, 6, 16, 2

4. Add the 'even' digits and each individual digit of the products above:
 [4 + 9 + 7 + 9 + 7] + [1 + 8 + 4 + 6 + 1 + 6 + 2] = 64

5. Subtract the least significant digit of this sum from 10 to form the check digit:
 10 - 4 = 6

6. Appended this digit to the right of the decimal ID number for display to
subscribers in unidirectional Host validation:

49,927,398,716
(which may be displayed on screen as "0-049-927-398-716")

*Further information was available at http://staff.semel.fi/~kribe/document/luhn.htm as of 14 July 2000.

 POD Copy Protection System Page B

Appendix B. Applying CP-Key to DES Engine (Normative)

METHOD OF APPLICATION
The cryptographic key is applied to many DES engines as a 64-bit value as described in FIPS-
PUB 46-2 and FIPS-PUB 81. The POD-CP specification above defines generation of a 56-bit
integer CP-Key (Ks_dfast). The 64-bit key is generated from Ks_dfast by adding a parity bit to
each 7-bit block.

Starting with Ks_dfast in a 56-bit format:

Ks_dfast = K1 K2 K3 ... K56 Where K1 represents the most significant bit of Ks_dfast.

By adding parity bits after each 7 bits of Ks_dfast we get the 64-bit key:

K64bit = K1 K2 ... K7 P1 K8 ... K14 P2 K50 ... K56 P8

where Pi shall be either 0 or 1 so that each octet has odd parity (i.e. there is an odd number of

"1" bits).

For example, for an original value of CP-Key:

Ks_dfast= 0123456789abcd(16)
= 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101(2)

Break it into eight 7-bit blocks:

Ks_dfast= 0000000 1001000 1101000 1010110 0111100 0100110 1010111 1001101(2)

Add the parity bits as the last bit of each octet to get the 64-bit key:

K64bit = 00000001 10010001 11010000 10101101 01111001 01001100 10101110 10011011(2)
 = 0191d0ad794cae9b(16)

 POD Copy Protection System Page C

EXAMPLES OF CP ENCRYPTION OF MPEG DATA IN TRANSPORT PACKETS
This section shows examples of packets before and after DES encryption by the copy protection
system. The encryption key used here is 0123456789ABCDEF(16) in 64-bit format (or
00451338957377(16) in 56-bit format), which is shown in FIPS-PUB 81 as an example. The lines
“C:” and “E:” for each example show the transport packet data before and after CP encryption
respectively (cleartext and encrypted).

Example 1: A null packet.
C: 47 1f ff 10 ff ff ff ff ff ff ff ff ff ff ff ff ff ...
E: 47 1f ff 10 ff ff ff ff ff ff ff ff ff ff ff ff ff ...

CP encryption leaves the packets that don’t belong to a copy protected program unchanged.

Example 2: A packet without adaptation field that belongs to a copy protected program.
C: 47 10 22 1c d4 75 09 40 c3 61 ec 26 1a 30 cf 1c c6 e1 d0 d1 ...
E: 47 10 22 dc 03 f9 77 f6 89 01 4a 9f 09 f0 ef bc 85 58 9f 9f ...

DES encryption starts right after the packet header. transport_scrambling_control field is
changed from 00 to 11 (4th byte: 1c to dc). This field could be either 10 (even key) or 11(odd
key) when seamless key refresh mechanism is introduced as per ECN-00075. Each 8-byte
block in the packet payload is encrypted with DES ECB mode.

Example 3: A packet with adaptation field that belongs to a copy protected program.

C: 47 00 50 32 02 00 ff 88 f5 32 3e ac 87 eb 10 ...
... c3 d6 88 f7 32 32 ac af eb e0 78 41 11 (end of packet)

E: 47 00 50 f2 02 00 ff bb 5a ec 14 56 8b 66 b4 ...
... 80 50 cf cd ad 7e d1 de eb e0 78 41 11 (end of packet)

DES encryption starts after the adaptation field, which takes 3 bytes in this example (1 byte for
adaptation_field_length and 2 bytes for the body). The payload is encrypted the same way
except for the short block (5 bytes) at the end, which remains clear.
transport_scrambling_control field is changed as described in example 2 above.

